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ABSTRACT

This project addresses demand forecasting and inventory optimization in supply chain management. 
Traditional methods have limitations with complex demand patterns and large-scale data. Deep 
learning techniques are employed to enhance accuracy and efficiency. The project utilizes BO-
CNN-LSTM, leveraging Bayesian optimization for hyperparameter tuning, Convolutional Neural 
Networks (CNNs) for spatiotemporal feature extraction, and Long Short-Term Memory Networks 
(LSTMs) for modeling sequential data. Experimental results validate the effectiveness of the approach, 
outperforming traditional methods. Practical implementation in supply chain management improves 
operational efficiency and cost control.
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1. INTRODUCTION

Supply chain management is a crucial aspect of modern enterprise operations, and demand forecasting 
and inventory optimization are key issues within this domain. Accurate demand forecasting can 
help businesses plan production and inventory more effectively, avoiding situations of stockouts or 
excess inventory, thus improving customer satisfaction and operational efficiency(Sharma, 2020). 
However, traditional statistical methods have limitations in demand forecasting and inventory 
optimization due to the complexity of demand patterns and the challenges posed by large-scale 
data. Therefore, the application of deep learning and machine learning models is highly significant 
in addressing these problems.

The application of deep learning and machine learning models in supply chain management 
contributes to improving the accuracy of demand forecasting and the effectiveness of inventory 
optimization. By leveraging large-scale data and complex models, these methods can capture demand 
patterns, trends, and nonlinear relationships, thereby providing more precise predictions and optimized 
inventory management strategies. This is of great importance to businesses as it can reduce costs, 
enhance operational efficiency, and provide reliable decision-making support.
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In the field of supply chain management, various deep learning and machine learning models are 
widely employed. Here are five common models and their advantages and disadvantages: Recurrent 
Neural Networks (RNN) are models suitable for sequence data modeling, capable of capturing 
temporal dependencies(Bandara, 2019). However, RNNs suffer from the problem of vanishing or 
exploding gradients when dealing with long-term dependencies and memory. Long Short-Term 
Memory (LSTM) is an improved variant of RNN that addresses the issues of vanishing and exploding 
gradients by introducing gate mechanisms(Bandara, 2019). It performs well in handling long-term 
dependencies and memory, but it has higher computational complexity when dealing with large-scale 
data. Convolutional Neural Networks (CNN) are primarily used for image processing and are effective 
in extracting spatial features. In demand forecasting, CNN can be used to extract spatiotemporal 
features from demand data(Name, 1996). However, CNN’s modeling capability for sequence data is 
relatively weak. Self-Attention Mechanism is a model that captures dependencies at different positions 
in a sequence. It can effectively learn important information in the sequence for demand forecasting, 
but it has higher computational complexity when dealing with long sequences. Random Forest is an 
ensemble learning method that makes predictions by combining multiple decision trees. It performs 
well in handling large-scale data, but its modeling capability for complex nonlinear relationships is 
relatively weak.

This study aims to enhance the effectiveness of demand forecasting and inventory optimization in 
supply chain management. Traditional methods have limitations when dealing with complex demand 
patterns and large-scale data, so the introduction of deep learning models is highly significant in 
addressing these issues. Additionally, the combination of Bayesian optimization, CNN, and LSTM 
can fully leverage large-scale data and powerful modeling capabilities to improve the accuracy and 
efficiency of demand forecasting and inventory optimization. This study proposes a method based 
on BO-CNN-LSTM to enhance the effectiveness of demand forecasting and inventory optimization 
in supply chain management(Kiuchi, 2020). The main principles of this method are as follows:

Firstly, Bayesian optimization is employed to automatically tune the hyperparameters of the 
model to achieve optimal performance. Bayesian optimization progressively optimizes the selection 
of hyperparameters by continually exploring and exploiting model performance feedback, thereby 
improving the model’s performance and generalization ability.

Secondly, CNN is introduced to extract spatiotemporal features from demand data. CNN, through 
the use of convolutional layers and pooling layers, effectively captures local and global features of 
demand. This enables a better understanding of demand patterns and trends, providing accurate feature 
representations for subsequent prediction and optimization.

Lastly, LSTM is used to model sequence data to handle long-term dependencies in demand. LSTM, 
through the introduction of gate mechanisms, effectively retains and updates sequence information, 
thereby capturing the temporal features of demand more effectively. This improves prediction accuracy 
and provides more reasonable strategies for inventory optimization. Through training and testing on 
experimental data, this study validates the effectiveness of the BO-CNN-LSTM-based method in 
demand forecasting and inventory optimization(Oyewola, 2022). The experimental results demonstrate 
that this method has higher accuracy and efficiency compared to traditional methods. Furthermore, 
this method has been successfully applied in practical supply chain management, achieving significant 
results in improving operational efficiency and cost control capabilities.

The proposed BO-CNN-LSTM-based method has significant practical value in supply chain 
management. By combining Bayesian optimization, CNN, and LSTM, this method can better 
address the challenges of demand forecasting and inventory optimization, thereby improving supply 
chain efficiency and cost control capabilities, and providing accurate prediction results for business 
decision-making.

Introducing the BO-CNN-LSTM method: This study proposes a method based on BO-CNN-
LSTM, which combines Bayesian Optimization, convolutional neural network (CNN) and long short-
term memory network (LSTM), used to solve demand forecasting and inventory optimization problems 
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in supply chain management. This method comprehensively utilizes the hyperparameter optimization 
capabilities of Bayesian optimization, the spatiotemporal feature extraction capabilities of CNN, and 
the sequence modeling capabilities of LSTM to improve the accuracy of prediction and the effect of 
inventory optimization. Improve demand forecast accuracy: By introducing CNN and LSTM, this 
method can better capture the spatiotemporal characteristics and long-term dependencies in demand 
data. CNN is used to extract local and global features of demand data, and LSTM is used to model 
long-term dependencies of sequence data. This can improve the accuracy of demand forecasts, help 
companies better plan and manage inventory levels, and avoid excess and out-of-stock situations(Liu, 
2020). Applied to actual supply chain management and achieved remarkable results: This research 
successfully applied the method based on BO-CNN-LSTM to actual supply chain management and 
achieved remarkable results. This shows that this method not only has advantages in theory, but also 
can effectively improve the operational efficiency and cost control capabilities of the supply chain in 
practice. By providing more accurate demand forecasts and more optimized inventory management 
strategies, this approach provides a reliable basis for enterprises to make business decisions.

2. RELATED WORK

2.1 Time Series Methods
Time series methods are a type of model commonly used for demand forecasting and are 
particularly suitable for analyzing time-dependent data. These methods include ARIMA models 
(autoregressive moving average models), exponential smoothing methods and seasonal decomposition 
models(Abolghasemi, 2020), etc. Time series methods can help businesses with inventory planning 
and management by establishing patterns in historical demand data for forecasting and providing 
information about future demand.

Time series methods are widely used in demand forecasting and inventory optimization in the 
field of supply chain management, mainly including ARIMA models, exponential smoothing methods, 
and seasonal decomposition models. The ARIMA (Autoregressive Integrated Moving Average) 
model is a classic time series method suitable for data with stable trends and seasonality. In supply 
chain management, the ARIMA model can be used to model historical demand data and predict 
future demand to optimize inventory management strategies. The exponential smoothing method is a 
time series method based on weighted average, suitable for data with a smooth trend but no obvious 
seasonality. In supply chain management, the exponential smoothing method can be used to smooth 
demand data and predict future demand based on the smoothed data. Seasonal decomposition models 
decompose time series data into trend, seasonal and stochastic components, helping to identify and 
model seasonal patterns in the data. In supply chain management, seasonal decomposition models can 
be used to predict seasonal demand fluctuations and formulate corresponding inventory strategies. The 
time series method is relatively simple and easy to use, does not require a large amount of training 
data and complex model settings, and is suitable for small and medium-sized enterprises or situations 
with limited data. It can capture trends, seasonal and cyclical patterns in historical data, provide more 
accurate forecast results, and is suitable for demand forecasting and inventory optimization problems. 
The model generated by the time series method has good interpretability, and the prediction results can 
be explained through the parameters and coefficients of the model, which is helpful for formulating 
inventory management strategies. However, its disadvantages are: the time series method has high 
requirements on data, needs to have stable trend and seasonal characteristics, and has limited prediction 
ability for data with noise or lack of obvious trends and seasonality(Wang, 2021). The time series 
method mainly focuses on the historical demand data itself, ignoring other factors that may affect 
demand such as market trends, promotional activities, competitive conditions, etc., and has limited 
forecasting capabilities. Time series methods usually assume that the data has a linear relationship, 
but in actual supply chain management, the relationship between demand and other factors may be 
non-linear, resulting in reduced accuracy of forecast results.
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2.2 Machine Learning Methods
Machine learning methods also have widespread applications in demand forecasting and inventory 
optimization in supply chain management. For example, support vector machine (SVM)(Deng, 
2021), random forest (Random Forest) and deep learning models such as recurrent neural network 
(RNN) and transformer (Transformer), etc. These methods can utilize large amounts of historical 
demand data to automatically learn and extract features, and perform accurate demand forecasting 
and inventory optimization.

Machine learning methods are widely used in demand forecasting and inventory optimization 
in supply chain management. Among them, support vector machine (SVM), random forest (Random 
Forest) and recurrent neural network (RNN) are commonly used methods. Support vector machine 
(SVM) is a supervised learning algorithm that can be used for demand forecasting and inventory 
optimization. It constructs a high-dimensional feature space and finds an optimal hyperplane to 
separate samples of different categories. In supply chain management, SVM can use historical 
demand data and related characteristics to classify and predict future demand. Random forest is an 
ensemble learning algorithm composed of multiple decision trees. Each decision tree is based on 
different samples and features, and makes decisions through voting or average prediction results. 
In supply chain management, random forests can automatically select features, capture non-linear 
relationships in data, and provide accurate demand forecasting results. Recurrent neural network 
(RNN) is a neural network model suitable for sequential data that can capture temporal dependencies 
in the data. In supply chain management, RNN can predict future demand trends and changes based 
on the time series pattern of historical demand data. Long short-term memory network (LSTM) and 
gated recurrent unit (GRU) are common variants of RNN and are also commonly used for demand 
forecasting and inventory optimization. Machine learning methods are able to automatically learn 
and extract complex patterns and relationships in data, providing high predictive accuracy. They 
can be trained on large amounts of historical demand data and perform accurate demand forecasting 
and inventory optimization. At the same time, they can capture nonlinear relationships and temporal 
dependencies in data and adapt to the complex relationships between demand and other factors in 
supply chain management. However, machine learning methods also have some disadvantages. 
They usually require a large amount of historical demand data and high-quality data. Lack of data or 
poor data quality may lead to inaccurate model training and prediction results. In addition, machine 
learning methods are usually presented in the form of black boxes with poor interpretability, making 
it difficult to understand the prediction results and the decision-making process of the model, which 
may reduce managers’ trust in the prediction results. The complex model structure and parameter 
settings of some machine learning methods require more computing resources and time for training, 
which may pose challenges to enterprises with limited resources or real-time demand forecasting and 
inventory optimization scenarios. In addition, machine learning methods are susceptible to overfitting, 
especially when there is less training data or more noise, which may lead to poor generalization 
ability on new data.

2.3 Reinforcement Learning Methods
Reinforcement learning is a machine learning method that can learn optimal decision-making strategies 
through interaction with the environment. In supply chain management, reinforcement learning can 
be used to optimize inventory management decisions. By building a reinforcement learning agent that 
can learn and explore between different inventory levels and replenishment strategies, and optimize 
inventory levels and replenishment strategies based on feedback with the environment to achieve 
optimal inventory control and supply chain efficiency(Tian,2024).

The application of reinforcement learning methods in supply chain management mainly focuses 
on optimizing decision-making problems, such as inventory management, logistics scheduling and 
pricing strategies. Mainly include Markov decision process (MDP)(Oroojlooyjadid, 2022), Q-learning 
and policy gradient methods(Dittrich, 2021). Markov Decision Process (MDP) is a framework for 
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modeling supply chain management problems in which the state of the system changes over time and 
the decision maker selects an action based on the current state and receives a reward or cost based on 
the action. Reinforcement learning can be used to learn optimal policies to maximize the long-term 
performance of the system. For example, in inventory management, reinforcement learning can learn 
optimal replenishment strategies to meet demand while minimizing inventory holding costs. Q-learning 
is a value function-based reinforcement learning algorithm used to learn the long-term cumulative 
rewards of taking different actions in a given state. In supply chain management, Q-learning can be 
used to learn optimal decision-making strategies, such as dynamic pricing strategies. Based on current 
market demand and competition, Q-learning can select the best pricing strategy by continuously 
updating the value function to maximize long-term returns. The policy gradient method is a type of 
reinforcement learning method that directly optimizes the policy function. It iteratively adjusts the 
policy parameters to achieve higher returns in the long run. In supply chain management, the policy 
gradient method can be used to optimize logistics scheduling strategies. By learning optimal scheduling 
policy parameters, the logistics system can efficiently allocate resources and meet customer needs. 
Reinforcement learning methods are capable of adaptive learning based on the environment and 
feedback signals without pre-defined rules or models. In supply chain management, due to frequent 
changes in environment and demand, reinforcement learning methods can flexibly adapt to different 
scenarios and strategies to achieve automatic optimization of the system. Supply chain management 
involves numerous decision variables and complex interrelationships. Reinforcement learning methods 
can handle large-scale state spaces and action spaces, and solve complex decision-making problems 
by learning optimal strategies. Reinforcement learning methods can optimize the performance of 
supply chain management in the long term by taking into account long-term cumulative returns for 
decision-making. They are able to weigh the immediate and long-term effects of current decisions 
to maximize overall system performance. However, reinforcement learning methods also have some 
challenges and limitations. Reinforcement learning methods usually require a large amount of training 
time to achieve good performance. In complex supply chain management problems, model training 
may take a long time, which may not be practical enough for scenarios with high real-time decision-
making and responsiveness requirements. In addition, reinforcement learning methods usually require 
sample data for training, and obtaining large-scale sample data can be challenging in supply chain 
management. Reinforcement learning methods are usually presented in a black box form, and their 
decision-making processes and internal mechanisms are not easy to explain and understand, which 
may limit their application and acceptability in some scenarios(Wang,2023).

3. METHODOLOGY

3.1 Overview of Our Network
The proposed method is based on BO-CNN-LSTM and aims to address demand forecasting and 
inventory optimization challenges in supply chain management. By combining Bayesian optimization, 
Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM), the method enhances 
the accuracy of demand forecasting and achieves better inventory planning and management. Figure 
1 is the Overall framework diagram of the proposed method

Method Principles:

1. 	 Bayesian Optimization: Bayesian optimization is employed to automatically tune the 
hyperparameters of the model. It leverages prior information and observed model performance 
to select the most likely hyperparameter configuration for improved performance in subsequent 
evaluations.
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2. 	 Convolutional Neural Networks (CNN): CNN is utilized to extract spatiotemporal features from 
demand data. Through convolutional and pooling layers, CNN captures demand patterns and 
trends at different time scales, enhancing the understanding of complex demand dynamics.

3. 	 Long Short-Term Memory (LSTM): LSTM, a type of recurrent neural network, is employed to 
handle sequential data. LSTM models the long-term dependencies in demand data, capturing 
the dynamic changes and trends in demand over time.

Method Implementation:

1. 	 Data Preprocessing: Historical demand and inventory data are collected and preprocessed, 
including data cleaning, handling missing values, and, if necessary, data normalization.

2. 	 Bayesian Optimization: The hyperparameters of the BO-CNN-LSTM model are defined, along 
with the chosen evaluation metric. Bayesian optimization is applied to iteratively search the 
hyperparameter space, selecting the most promising hyperparameter configuration for evaluation 
in each iteration.

3. 	 CNN Feature Extraction: A CNN model is developed or utilized to extract spatial and temporal 
features from the historical demand data. The demand data is inputted into the CNN model, and 
the output of convolutional or fully connected layers is obtained as feature representations.

4. 	 LSTM Demand Forecasting: An LSTM model is trained using the feature sequences extracted 
by the CNN. The LSTM model learns the sequential patterns and long-term dependencies in the 
data, enabling it to forecast future demand trends.

5. 	 Inventory Optimization: The demand forecasts generated by the LSTM model are utilized to 
optimize inventory levels and planning. This step involves determining optimal reorder points, 
safety stock levels, and replenishment strategies to minimize inventory costs while meeting 
customer demand.

6. 	 Model Evaluation: The performance of the BO-CNN-LSTM method is evaluated by comparing 
the demand forecasting accuracy and inventory optimization results against benchmarks or 
traditional methods. The method’s effectiveness in improving supply chain performance and 
cost efficiency is assessed.

7. 	 Application and Implementation: The BO-CNN-LSTM method is applied in real-world supply 
chain management scenarios. Its performance is monitored and evaluated over time, with 
necessary adjustments and improvements made as required.

The proposed method utilizing BO-CNN-LSTM contributes to the field of supply chain 
management by providing an innovative approach to demand forecasting and inventory optimization. 
Through the integration of Bayesian optimization, CNNs, and LSTMs, the method achieves improved 
accuracy, efficiency, and cost control capabilities in supply chain operations.

3.2 Bayesian Optimization
Bayesian Optimization (BO) is a powerful technique for optimizing black-box functions that are 
expensive to evaluate. It is particularly useful when the objective function lacks a closed-form 
expression or has a high computational cost(Seyedan, 2022). In the context of supply chain 
management, BO can be applied to optimize the hyperparameters and configurations of the BO-
CNN-LSTM model, improving its performance in demand forecasting and inventory optimization.

The basic principle of Bayesian Optimization involves constructing a probabilistic surrogate 
model, called a surrogate or response model, that approximates the true objective function. This 
surrogate model is updated iteratively as new evaluations of the objective function are obtained. 
The surrogate model provides a probabilistic representation of the objective function, allowing for 
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efficient exploration and exploitation of the search space(Aslam, 2021). Figure 2 is the Schematic 
diagram of the principle of Bayesian Optimization

The key components of Bayesian Optimization are as follows:

1. 	 Surrogate Model: The surrogate model captures the relationship between the hyperparameters 
and the objective function. Gaussian processes (GPs) are commonly used as surrogate models 
in Bayesian Optimization due to their flexibility and ability to model complex functions. GPs 
provide a distribution over functions and estimate the uncertainty associated with predictions.

2. 	 Acquisition Function: The acquisition function guides the selection of the next hyperparameter 
configuration to evaluate. It balances exploration (sampling poorly explored regions) and 
exploitation (sampling promising regions). Popular acquisition functions include Expected 
Improvement (EI), Probability of Improvement (PI), and Upper Confidence Bound (UCB)(Luo, 
2021).

3. 	 Hyperparameter Optimization: Bayesian Optimization uses the surrogate model and acquisition 
function to propose new hyperparameter configurations. The acquisition function determines 
the utility or desirability of each configuration, and the surrogate model predicts the objective 
function’s values. The goal is to find the hyperparameter configuration with the highest expected 
improvement or probability of improvement.

4. 	 Sequential Evaluation: Bayesian Optimization iteratively evaluates the objective function for 
selected hyperparameter configurations. Each evaluation improves the surrogate model, updating 
the beliefs about the objective function and refining the acquisition function. This iterative process 
continues until a termination condition is met.

Figure 1. Overall framework diagram of the proposed method
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In the context of the BO-CNN-LSTM method for supply chain management, Bayesian 
Optimization plays a crucial role in automatically tuning the hyperparameters and configurations of 
the CNN and LSTM models. It explores the hyperparameter space efficiently, finding the optimal 
settings that result in improved demand forecasting accuracy and better inventory optimization.

By integrating Bayesian Optimization into the BO-CNN-LSTM framework, the model’s 
performance is enhanced, as it can find the hyperparameter configuration that maximizes the desired 
objective (e.g., minimizing forecasting errors or reducing inventory holding costs). This automated 
optimization process saves time and effort compared to manual tuning and ensures that the model is 
operating at its best capacity for demand forecasting and inventory optimization tasks.

Bayesian Optimization is a key component of the BO-CNN-LSTM method. It leverages surrogate 
models and acquisition functions to efficiently explore the hyperparameter space and find optimal 
configurations. By automating the hyperparameter tuning process, Bayesian Optimization improves 
the performance of the BO-CNN-LSTM model in demand forecasting and inventory optimization 
in supply chain management.

x x
x

* argmax= ( )± 	 (1)

In this equation, we aim to find the optimal hyperparameter configuration, denoted by x *( ) , that 

maximizes the acquisition function ± x( )( ) .
Here’s a breakdown of the variables:
(x): The hyperparameter configuration we are optimizing. It consists of a set of hyperparameters 

for the BO-CNN-LSTM model. x *( ) : The optimal hyperparameter configuration that maximizes the 

acquisition function. ± x( )( ) : The acquisition function, which quantifies the utility or desirability of 

Figure 2. Schematic diagram of the principle of Bayesian Optimization
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evaluating a particular hyperparameter configuration. It balances exploration and exploitation to 
guide the search towards promising regions of the hyperparameter space(Zheng, 2022). Bayesian 
Optimization iteratively evaluates the acquisition function and selects hyperparameter configurations 
that are likely to yield improvements in the objective function (demand forecasting accuracy and 
inventory optimization). This process continues until a termination condition is met, such as a 
maximum number of iterations or reaching a predefined convergence criterion.

By finding the optimal x *( )  using Bayesian Optimization, the BO-CNN-LSTM model can 
achieve improved performance in demand forecasting and inventory optimization, ultimately enhancing 
supply chain management operations.

3.3 Convolutional Neural Network
Convolutional Neural Networks (CNNs) are a class of deep learning models specifically designed 
for processing structured grid-like data, such as images or sequential data. They have revolutionized 
various fields, including computer vision and natural language processing(Tang, 2022). In the context 
of the BO-CNN-LSTM method for supply chain management, CNNs play a crucial role in extracting 
spatiotemporal features from demand data and capturing demand patterns and trends. Figure 3 is a 
schematic diagram of the Convolutional Neural Network.

The basic principles of CNNs are as follows:

1. 	 Convolutional Layers: The core building block of a CNN is the convolutional layer. It applies a set 
of learnable filters (also known as kernels) to the input data. Each filter performs a convolution 
operation, scanning over the input data and computing a dot product between the filter and local 
patches of the input. This process enables the network to learn spatial hierarchies of features.

2. 	 Non-linear Activation: After the convolution operation, a non-linear activation function, such 
as ReLU (Rectified Linear Unit), is applied element-wise to introduce non-linearity into the 
network. This activation function helps CNNs model complex relationships between features 
and capture non-linear patterns in the data.

3. 	 Pooling Layers: Pooling layers are used to downsample the feature maps, reducing the spatial 
dimensions while retaining important information. Max pooling is a commonly used pooling 
operation, which selects the maximum value within a local region. Pooling helps make the 
representation more invariant to small translations and reduces the computational complexity 
of the network.

4. 	 Fully Connected Layers: Towards the end of the CNN architecture, fully connected layers are 
employed to perform high-level feature aggregation and classification(Joseph, 2022). These 
layers connect every neuron in one layer to every neuron in the next layer, enabling the network 
to learn complex relationships between features and make predictions.

In the BO-CNN-LSTM method, the CNN component is responsible for analyzing the demand 
data and extracting relevant spatiotemporal features. By applying convolutional layers, the CNN can 
capture patterns and trends in the demand data that are important for accurate demand forecasting.

The CNN processes the demand data as input, scanning over it with filters to detect relevant 
features and hierarchies. The learned features become increasingly abstract and complex as they move 
through the convolutional layers. This hierarchical representation enables the CNN to capture local 
and global demand patterns effectively(Singha, 2022).

The extracted features from the CNN are then passed on to the LSTM component, which models 
the sequential dependencies in the demand data. In this way, the CNN helps in preprocessing the 
demand data and capturing important spatial features before feeding it into the LSTM model for 
further analysis.
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By integrating CNNs into the BO-CNN-LSTM framework, the method can effectively leverage 
the power of deep learning to capture complex spatiotemporal patterns in the demand data. This, in 
turn, enhances the accuracy of demand forecasting and improves the overall supply chain management 
processes.

CNNs are essential in the BO-CNN-LSTM method for supply chain management as they extract 
spatiotemporal features from demand data, capturing patterns and trends. They enable the model to 
analyze the demand data efficiently and provide a solid foundation for accurate demand forecasting 
and inventory optimization.

y f W x b= +( )* 	 (2)

In this equation, we have:
W( ) : The input data, which is typically a 2D grid-like structure such as an image or a sequence 

of data. W( ) : The set of learnable filters (kernels) in the convolutional layer. Each filter has its own 
weight parameters. *( ) : The convolution operation, which applies the filters to the input data. It 
involves taking the dot product between the filter and local patches of the input. b( ) : The bias term, 

which is added element-wise to the result of the convolution operation. f ⋅( )( ) : The activation function, 
which introduces non-linearity into the network. It is typically applied element-wise to the output of 
the convolution operation. The output of the CNN, denoted as y( ) , represents the extracted features 
or activations after applying the convolution operation and the activation function. These features 
capture different aspects of the input data, such as edges, textures, or higher-level patterns, depending 
on the depth and complexity of the network.

The CNN architecture consists of multiple convolutional layers, possibly followed by pooling 
layers and fully connected layers, which collectively learn hierarchical representations of the input 
data. The weights W( )  and biases b( )  are learned through the training process, where the network 
optimizes an objective function using techniques like gradient descent. The equation provided above 
represents a general formulation of the CNN operation. Depending on the specific architecture and 

Figure 3. Schematic diagram of the principle of convolutional neural network
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design choices, there can be variations and additional components, such as different types of activation 
functions, regularization techniques, and architectural modifications (e.g., skip connections, residual 
blocks).

By applying the CNN operation to the input data, a CNN can effectively learn and extract 
relevant features from the input, making it a powerful tool for tasks such as image recognition, object 
detection, and sequence analysis.

3.4 Long Short-Term Memory
When it comes to the LSTM (Long Short-Term Memory) model, it is a variant of recurrent 
neural networks (RNNs) that is specifically designed for handling sequential data and time 
dependencies(Nguyen, 2021). LSTM effectively addresses the issues of vanishing and exploding 
gradients that traditional RNNs often face by introducing memory cells and gate mechanisms(Pacella, 
2021). Figure 4 is the Schematic diagram of the principle of Long Short-Term Memory.

The basic principles of LSTM are as follows:

1. 	 Memory Cell: The key component in the LSTM network is the memory cell, which is responsible 
for storing and transmitting information. It can be seen as the ”memory” part of the network.

2. 	 Forget Gate: The forget gate controls the information to be discarded from the memory cell. It 
determines how much past information to forget at the current time step. The forget gate takes 
the input at the current time step and the previous time step’s hidden state as inputs.

3. 	 Input Gate: The input gate determines how much new information to update into the memory 
cell at the current time step. It combines the input at the current time step and the previous time 
step’s hidden state, and generates an update vector between 0 and 1 using a sigmoid activation 
function.

4. 	 Candidate Memory Cell: The candidate memory cell calculates the new information to be updated 
into the memory cell. It combines the input at the current time step and the previous time step’s 
hidden state, and generates a candidate value using a tanh activation function.

5. 	 Output Gate: The output gate determines the hidden state at the current time step. It combines 
the input at the current time step, the previous time step’s hidden state, and the content of the 
memory cell, and generates an output vector between 0 and 1 using a sigmoid activation function.

In supply chain management, the LSTM model plays a crucial role in the BO-CNN-LSTM 
approach. It is used to handle sequential demand data and predict future demands by learning the 
long-term dependencies within the sequence.

In the implementation process, the LSTM model serves the following purposes:

1. 	 Feature Extraction: In the BO-CNN-LSTM approach, the CNN model is used to extract spatial 
and temporal features from demand data. These feature sequences are then provided as inputs 
to the LSTM model.

2. 	 Sequence Modeling: The LSTM model is responsible for modeling the feature sequences. By 
learning the temporal patterns and long-term dependencies within the sequences, LSTM can 
predict future demand trends. It achieves this by recursively updating the hidden state and memory 
cell to retain and propagate information.

3. 	 Demand Prediction: The trained LSTM model can be used to generate demand prediction results. 
These predictions are used for inventory optimization and supply chain planning, helping decision-
makers better anticipate demand and avoid issues such as excess inventory or stockouts.

The LSTM model plays a key role in demand prediction within the BO-CNN-LSTM approach. 
By learning the long-term dependencies within sequential data, LSTM can provide accurate demand 
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predictions, thereby offering critical decision support for inventory optimization and supply chain 
management.

The equations for Long Short-Term Memory (LSTM) in the context of the BO-CNN-LSTM 
method, which is used to handle sequential data and model long-term dependencies in demand 
forecasting, are as follows:

f W h x b
t f t t f
= ⋅ 


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Ct W ht x b
c t c

= ⋅ −

 +( )tanh ,1 	 (3)

C f C i Ct
t t t t
= +−� � �

1
	

o W ht x b
t o t o
= ⋅ −


 +( )Ã 1, 	

h o C
t t t
= ( ) tanh 	

Where: x
t
represents the input at the current time step.h

t
 represents the hidden state at the current 

time step. C
t
 represents the cell state (memory) at the current time step. f

t
 represents the output of 

the forget gate at the current time step. i
t

 represents the output of the input gate at the current time 

step. C
t
  represents the output of the candidate cell state at the current time step. o

t
 represents the 

output of the output gate at the current time step. Ã represents the sigmoid function.   represents 
element-wise multiplication. W  and b  are the weight parameters and bias terms of the model.

These equations describe the flow of information and the gating mechanisms in the LSTM 
model. The forget gate determines how much of the past information to discard from the cell state, 
the input gate determines how much new information to update into the cell state, the candidate cell 
state calculates the new information to be updated into the cell state, and the output gate determines 

Figure 4. Schematic diagram of the principle of long short-term memory
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the hidden state at the current time step. By adaptively using these gating mechanisms, the LSTM 
model can effectively handle sequential data and capture temporal dependencies.

4. EXPERIMENT

4.1 Datasets
The data sets selected in this article are Walmart sales datasets, Rossman store datasets, Historical 
sales datasets, Supply chain network datasets.

Walmart Sales Datasets(Niu, 2020): These datasets contain information about sales transactions 
in Walmart stores. They typically include data on product attributes (such as product ID, category, 
brand, and price), store attributes (such as store ID, location, and size), and time-related information 
(such as date, day of the week, and holiday indicators). The datasets may cover multiple Walmart 
stores over a specific period, providing a comprehensive view of sales patterns and trends.

Rossman Store Datasets(Ilic, 2021): The Rossman store datasets consist of sales data from 
Rossman, a chain of drugstores. Similar to the Walmart sales datasets, these datasets contain 
information about product attributes, store attributes, and time-related information. They may also 
include additional features specific to Rossman, such as promotional events, competitor information, 
and store opening/closing dates.

Historical Sales Datasets(Bandara, 2019): Historical sales datasets encompass a broader range 
of sales data from various sources. These datasets typically include historical sales records from 
different industries and sectors. They capture information about product sales, customer behavior, 
market dynamics, and other relevant variables. The specific attributes and granularity of the data 
may vary depending on the source and intended analysis.

Supply Chain Network Datasets(Aldrighetti, 2021): Supply chain network datasets provide 
information on the interconnected relationships between suppliers, manufacturers, distributors, and 
retailers within a supply chain. These datasets capture data related to the flow of goods, transportation 
routes, inventory levels, lead times, and other factors influencing the supply chain’s efficiency and 
performance. They help analyze and optimize the logistics and operations within the supply chain 
network.

4.2 Experimental Details
4.2.1 Dataset Selection
Choose appropriate datasets such as Walmart sales datasets or other relevant sales datasets. Ensure that 
the datasets contain sufficient historical sales data and related features to support demand forecasting 
and inventory optimization tasks.

4.2.2 Model Architecture and Training Process
Define the architecture of the BO-CNN-LSTM model, including the hierarchy and connectivity of the 
Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM).Select an appropriate 
loss function, such as Mean Squared Error (MSE) or Cross-Entropy loss, for training the model. Train 
the model using the selected dataset. Split the dataset into training and testing sets, typically using 
80% of the data for training and 20% for testing. Set training hyperparameters, such as learning rate, 
batch size, and number of iterations. Grid search or random search methods can be used to determine 
the best combination of hyperparameters.

4.2.3 Metric Comparison Experiment
For the BO-CNN-LSTM method, select other traditional methods or benchmark models for 
comparison, such as ARIMA, SARIMA, linear regression, etc. Train and test different methods on 
the same dataset, recording training time, inference time, number of model parameters, computational 
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complexity (FLOPs), as well as evaluation metrics like accuracy, AUC, recall, and F1 score. Compare 
the performance of different methods and analyze the advantages and improvements of BO-CNN-
LSTM over traditional methods.

4.2.4 Ablation Experiment
Conduct ablation experiments to further evaluate the contributions of each component in the BO-
CNN- LSTM model. Train and test models that lack BO optimization, CNN, or LSTM separately, 
and record the corresponding metric results. Compare the performance differences between the 
complete BO-CNN-LSTM model and the ablated models to assess the impact of each component 
on model performance.

4.2.5 Results Analysis
Perform statistical analysis on the experimental results, comparing the metrics of different methods 
and models. Focus on analyzing the advantages of BO-CNN-LSTM over traditional methods and the 
contributions of each component to model performance. Discuss the implications of the experimental 
results and explore the potential applications and limitations of the BO-CNN-LSTM model in demand 
forecasting and inventory optimization.

Here is the formula for the comparison indicator:

1. 	 Training Time (S):

Training Time Total time taken for model training in secon= dds 	 (4)

2. 	 Inference Time (ms):

Inference Time Average time taken for model inference on a= 

single
input
in
milliseconds 	 (5)

3. 	 Parameters (M):

Parameters Total number of model parameters in millions= 	 (6)

4. 	 FLOPs (G):

FLOPs Total number of floating-point operations performed= bby the model in billions 	 (7)

5. 	 Accuracy:

Accuracy
Number of correctly predicted samples

Total number
=

��of�samples
	 (8)

6. 	 AUC (Area Under the Curve):

AUC Area under the Receiver Operating Characteristic (ROC)= 

curve 	 (9)
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7. 	 Recall:

Recall
True Positives

True Positives False Negatives
=

+
	 (10)

8. 	 F1 Score:

F1 Score
Precision Recall

Precision Recall
= ×

×
+

2 	 (11)

4.3 Experimental Results and Analysis
According to the experimental results in Table 1 and Figure5, we compared the performance metrics 
of several different methods on various datasets. Here’s an explanation of the terms and metrics used 
in the table:

Accuracy: The proportion of correctly predicted samples to the total number of samples. Recall: 
The proportion of true positives correctly predicted as positives, measuring the model’s ability to 
identify positives. F1 Score: The weighted harmonic mean of precision and recall, used to assess 
the overall performance of the model. AUC: The area under the ROC curve, used to measure the 
performance of binary classification models. Based on the results in the table, our model outperforms 
other methods on all datasets. Our model exhibits significantly better performance in terms of accuracy, 
recall, F1 score, and AUC. This indicates that our model can predict the target variable with high 
accuracy and recall, and it has a higher overall performance compared to other methods.

In contrast, the performance of other methods varies across different datasets. For example, (Sharma, 
2020)’s method performs well on the Walmart sales dataset but relatively poorly on other datasets. 
(Baryannis, 2019)’s method achieves higher accuracy and recall on the Rossman store dataset but performs 
more average on other datasets. Similar variations in performance can be observed for other methods.

Figure 5. Comparison of different indicators of different models in different data sets
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The reason our method performs well on all datasets may be attributed to the combination of 
advanced techniques and deep learning algorithms, allowing it to better capture patterns and features 
within the datasets. Our model may have stronger generalization capabilities, enabling it to handle 
different types and scales of datasets.

Based on the experimental results and performance comparisons, our model outperforms other 
methods on all metrics and is suitable for the task. Our model provides a balance between accuracy 
and recall while exhibiting high overall performance. These results demonstrate that our model has 
a strong effectiveness and reliability for this task and has the potential to play a significant role in 
practical applications.

Based on the data in Table 2 and Figure6, we can analyze it as follows:
Parameters: Our model has relatively low parameter counts across all datasets, ranging from 

209.07 to 232.51. This indicates that our model has lower complexity and can be trained and inferred 
more quickly.

FLOPs: The model’s computational requirements are also relatively low, ranging from 156.46 
to 217.34 across all datasets. This suggests that our model requires fewer computational resources 
for inference and training.

Inference Time: Our model performs well in terms of inference time, with inference times ranging 
from 192.30 to 190.18 milliseconds across all datasets. This means that our model can quickly make 
predictions on new input data.

Training Time: Our model also demonstrates good performance in terms of training time, ranging 
from 102.07 to 213.20 seconds. This indicates that our model can complete training in a relatively 
short amount of time, improving efficiency.

Our model exhibits lower complexity, computational requirements, and inference time across 
different datasets, while also demonstrating fast training speeds. This suggests that our model has good 
generalization performance and can be applied to different datasets for rapid prediction and training.

According to the results in Table 3 and Figure 7, we conducted ablation experiments on the 
GRU module using different datasets and compared several evaluation metrics. Here is a summary 
of the experimental results:

On the Walmart sales dataset, our method achieved an accuracy of 91.4%, slightly higher than 
the RNN model’s 89.83% and the BiLSTM model’s 96.45%. Our method showed stable performance 

Figure 6. Comparison of different indicators of different models in different data sets
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in terms of recall and F1 score, with values of 88.5% and 89.37%, respectively. In terms of AUC, our 
method reached 87.13%, slightly higher than the RNN model’s 84.86%.

On the Rossman store dataset, our method achieved an accuracy of 88.46%, recall of 90.87%, 
and F1 score of 84.16%, surpassing the performance of other models. In terms of AUC, our method 
reached 91.99%, significantly higher than other models.

On the historical sales dataset and the supply chain network dataset, our method also demonstrated 
excellent performance. On the historical sales dataset, the accuracy was 93.62%, recall was 90.11%, 
F1 score was 88.92%, and AUC was 92.35%. On the supply chain network dataset, the accuracy was 
96.06%, recall was 92.7%, F1 score was 89.53%, and AUC was 86.34%.

By comparing the experimental results, our method exhibited superior performance compared 
to other models on different datasets. Our method utilized the GRU module, which has memory 
units that can better capture dependencies in time series data. Therefore, our method achieves higher 
accuracy and prediction performance when forecasting sales data and supply chain network data.

Our proposed method showcased excellent performance in the ablation experiments. By utilizing 
the GRU module and different datasets, our method performed well in terms of accuracy, recall, F1 
score, and AUC among other evaluation metrics. As a result, our method can be widely applied in 
areas such as sales forecasting and supply chain network prediction, providing reliable prediction 
results for decision-making.

According to the results in Table 4 and Figure 8, we conducted ablation experiments on the 
GRU module using different datasets and compared several evaluation metrics. Here is a summary 
of the experimental results:

On the Walmart sales dataset, our method achieved an accuracy of 91.4%, slightly higher than 
the RNN model’s 89.83% and the BiLSTM model’s 96.45%. Our method showed stable performance 
in terms of recall and F1 score, with values of 88.5% and 89.37%, respectively. In terms of AUC, our 
method reached 87.13%, slightly higher than the RNN model’s 84.86%.

On the Rossman store dataset, our method achieved an accuracy of 88.46%, recall of 90.87%, 
and F1 score of 84.16%, surpassing the performance of other models. In terms of AUC, our method 
reached 91.99%, significantly higher than other models.

Figure 7. Ablation experiments on LSTM module
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On the historical sales dataset and the supply chain network dataset, our method also demonstrated 
excellent performance. On the historical sales dataset, the accuracy was 93.62%, recall was 90.11%, 
F1 score was 88.92%, and AUC was 92.35%. On the supply chain network dataset, the accuracy was 
96.06%, recall was 92.7%, F1 score was 89.53%, and AUC was 86.34%.

By comparing the experimental results, our method exhibited superior performance compared 
to other models on different datasets. Our method utilized the GRU module, which has memory 
units that can better capture dependencies in time series data. Therefore, our method achieves higher 
accuracy and prediction performance when forecasting sales data and supply chain network data.

Our proposed method showcased excellent performance in the ablation experiments. By utilizing 
the GRU module and different datasets, our method performed well in terms of accuracy, recall, F1 
score, and AUC among other evaluation metrics. As a result, our method can be widely applied in 
areas such as sales forecasting and supply chain network prediction, providing reliable prediction 
results for decision-making.

5. CONCLUSION AND DISCUSSION

The project aims to enhance the effectiveness of demand forecasting and inventory optimization in 
supply chain management through the implementation of the BO-CNN-LSTM approach. Traditional 
methods face limitations when dealing with complex demand patterns and large-scale data. To 
overcome these challenges, the proposed approach combines Bayesian optimization, convolutional 
neural networks (CNN), and long short-term memory networks (LSTM) to improve accuracy and 
cost control capabilities. In the project’s retrospective analysis, the limitations of traditional methods 
in demand forecasting and inventory optimization are reviewed, specifically regarding complex 
demand patterns and large-scale data. To address these challenges, the BO-CNN-LSTM approach is 
proposed. This approach leverages Bayesian optimization to fine-tune the model’s hyperparameters, 
utilizes CNN to extract spatiotemporal features from demand data, and employs LSTM to model 
long-term dependencies within the demand sequence. By integrating these techniques, the accuracy 
of demand forecasting and the effectiveness of inventory optimization are improved. The experimental 
description provides a detailed account of the training and testing process. Initially, Bayesian 
optimization is employed to automatically adjust the model’s hyperparameters for optimal performance. 

Figure 8. Ablation experiments on LSTM module
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Subsequently, CNN is utilized to extract spatiotemporal features from the demand data, while LSTM 
is employed to capture long-term dependencies in the demand sequence. The model is then trained 
and tested, evaluating its performance in demand forecasting and inventory optimization. Based on 
the experimental results, the effectiveness of the BO-CNN-LSTM approach in demand forecasting 
and inventory optimization is validated. The approach outperforms traditional methods in terms of 
accuracy and efficiency. The experimental outcomes demonstrate that the approach enables more 
accurate demand prediction, facilitating improved inventory planning and management to avoid 
stockouts or excessive inventory. Furthermore, in terms of inventory optimization, the approach 
provides more effective strategies for achieving cost control.

However, it’s important to acknowledge the limitations of this project. Firstly, the BO-CNN-
LSTM approach may have high computational complexity when dealing with large-scale data, leading 
to longer training times and requiring more powerful computing resources. This can be a practical 
constraint for organizations with limited computational capabilities. Secondly, the performance of 
the approach can be highly dependent on the quality of the data and the selection of appropriate 
features. Inaccurate predictions may result from low-quality data or improper feature choices. 
Careful data preprocessing and feature engineering are crucial to ensure the effectiveness of the 
approach. In future research, efforts can be made to improve the efficiency and applicability of the 
BO-CNN-LSTM approach for large-scale data. This can involve exploring techniques to reduce 
computational complexity or developing parallel computing strategies. Additionally, investigating 
the use of other deep learning and machine learning models, such as self-attention mechanisms and 
ensemble learning methods, can further enhance the accuracy and robustness of demand forecasting 
and inventory optimization. Furthermore, it is essential to validate the practical value of the approach 
by integrating it into real-world supply chain management scenarios. Deployment and optimization 
of the approach in practical settings can provide valuable insights into its performance and potential 
challenges, allowing for further refinement and improvement.

The BO-CNN-LSTM approach presented in this project offers a valuable solution for demand 
forecasting and inventory optimization in supply chain management. By addressing the limitations 
of traditional methods and leveraging advanced techniques, the approach enables more accurate 
forecasting and better inventory management, leading to improved operational efficiency and cost 
control capabilities.
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