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ABSTRACT

Outlier detection is an important data mining technique. In this article, the triangle inequality of 
distances is leveraged to design a pre-cutoff value (PCV) algorithm that calculates the outlier degree 
pre-threshold without additional distance computations. This algorithm is suitable for accelerating 
various metric space outlier detection algorithms. Experimental results on multiple real datasets 
demonstrate that the PCV algorithm reduces the runtime and number of distance computations for the 
iORCA algorithm by 14.59% and 15.73%, respectively. Even compared to the new high-performance 
algorithm ADPOD, the PCV algorithm achieves 1.41% and 0.45% reductions. Notably, the non-outlier 
exclusion for the first data block in the dataset is significantly improved, with an exclusion rate of up 
to 36.5%, leading to a 23.54% reduction in detection time for that data block. While demonstrating 
excellent results, the PCV algorithm maintains the data type generality of metric space algorithms.
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INTRODUCTION

The continuous expansion of data volumes and innovative applications propels the burgeoning 
growth of the big data industry. The cumulative volume of data places significant stress on data 
storage capabilities. However, simply increasing storage devices is not a sustainable solution. Viable 
strategies include timely data analysis and mining, as they alleviate the pressure on storing raw data 
and maximize data value.

As a core step in data processing, data mining is an active academic research field, giving rise 
to various techniques, such as classification, clustering, association analysis, and outlier detection. 
While most data mining techniques focus on discovering regular patterns within datasets, non-regular 
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patterns are sometimes equally valuable. Outlier detection algorithms constitute a vital branch of data 
mining designed to identify these non-regular patterns. They enable the discovery of distinctive data 
points within a dataset, known as outliers or anomalies. Thanks to outlier detection, we can promptly 
identify exceptional events within data, such as network attacks (Catillo et al., 2023), fraudulent 
transactions (Hilal et al., 2022), or equipment malfunctions (Nesa et al., 2018), thus reducing losses. 
Moreover, outlier detection contributes to enhancing data quality (Larson et al., 2019), recognizing 
exceptional outcomes within datasets, and even unearthing new knowledge.

Research into outlier detection algorithms focuses on either specialized or generic algorithms. 
Specialized algorithms are tailored and optimized for the characteristics of data in various domains, 
making full use of available information to expedite outlier detection. However, in the era of big 
data, the ever-expanding and diverse data types pose significant challenges to the design capacity of 
specialized algorithms. In such circumstances, generic outlier detection algorithms have emerged. 
Generic algorithms abstract and unify commonalities across data types in different domains, 
performing searches and mining using only partial information from the dataset, thereby enabling the 
application of a single algorithm across diverse data types. While there may be some performance 
trade-offs, generic algorithms significantly reduce data mining systems’ development and maintenance 
costs, bringing them significant attention in academic and industrial circles in recent years.

Fortunately, most data types can be designed with distance functions that adhere to the triangle 
inequality, allowing them to be mapped to metric spaces (Mao et al., 2015). This, in turn, facilitates 
the use of metric space algorithms for retrieval, analysis, and mining. Metric space outlier detection 
utilizes a definition of outliers entirely based on distance and detection algorithms that are also fully 
reliant on distance. It eschews the use of any information other than distance, making it applicable 
to a wide range of data types.

Metric space outlier detection algorithms belong to the distance-based outlier detection algorithm 
class. Much like their counterparts, they employ distance triangle inequality for pruning to eliminate 
non-outliers and accelerate the outlier detection process. This step heavily depends on the cutoff value 
of the outlier degree, where a higher value leads to improved efficiency in non-outlier exclusion. 
However, existing metric space outlier detection algorithms face a critical issue when detecting the 
first data block, where the available outlier degree cutoff value is set to 0, causing significant delays 
in detecting that block and severely impeding overall detection efficiency. To address this problem, 
we propose a pre-cutoff value calculation method that can be used to accelerate metric space outlier 
detection. By making full use of the distance triangle inequality, this method calculates an initial outlier 
degree cutoff value, hereafter referred to as the “pre-cutoff value,” through minimal computations.

The main contributions of this paper are summarized as follows:

(1) 	 Analyzing the time allocation of each data block in the outlier detection process reveals that the 
time cost of the first data block is significantly greater than that of other blocks, and we analyze 
the reasons behind this.

(2) 	 Introducing a pre-cutoff value calculation method to accelerate metric space outlier detection, 
utilizing the distance triangle inequality, and designing a method that does not require additional 
distance computations.

(3) 	 Proving mathematically that the pre-cutoff value–based accelerated outlier detection algorithm 
guarantees correct results.

The subsequent sections of this paper are outlined as follows: The next section provides an 
overview of distance-based outlier detection algorithms, including some metric space outlier detection 
algorithms. After that, we introduce the pre-cutoff value calculation method for accelerating metric 
space outlier detection and then analyze and prove its correctness. The following section presents the 
experimental results and provides an analysis. Finally, the last section summarizes the paper’s work 
and outlines potential future work.
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RELATED WORK

Distance-based outlier definitions primarily fall into three categories: DB(p,d) outliers (Knorr & Ng, 
1998; Knorr et al., 2000), k-nearest neighbor (kNN) distance sum outliers (Angiulli & Pizzuti, 2005), 
and k-distance outliers (Ramaswamy et al., 2000). These three definitions are all nearest neighbor 
outlier definitions, measuring the outlierness of data points based on the number or distance of their 
nearest neighbors.

DB(p,d) outliers, for instance, are defined as data points in the dataset DS for which at least a 
proportion p of points in DS have a distance greater than d from them. An equivalent definition states 
that a point is an outlier if the number of points within a distance R from it does not exceed k; such 
a point is known as a k-R outlier. According to this definition, a point is either a regular point or an 
outlier with no in-between status.

By contrast, k-NN distance sum outliers are defined by considering the sum of the distances to 
the k nearest neighbors for each object in the dataset as their outlier degree. The top n objects with the 
highest outlier degree are then considered the top-n outliers. In other words, the average distance to 
the k nearest neighbors is defined as the outlier degree, and the top-n outliers are ranked accordingly.

Distance-based outlier detection algorithms, based on the aforementioned distance-based 
outlier definitions, can be traced back to 1998 when Knorr and Ng (1998) first introduced distance-
based outlier definitions and simultaneously proposed three categories of distance-based detection 
algorithms: index-based, nested-loop, and cell-based algorithms (Knorr et al., 2000).

In 2003, Bay and Schwabacher (2003) presented the ORCA algorithm, which partitions the 
dataset and applies a simple pruning rule. Once an object’s current outlier degree falls below the 
threshold for the top-n outliers, that object is no longer considered a potential outlier. This approach 
achieved near-linear detection speed, establishing itself as a state-of-the-art algorithm in the field of 
outlier detection.

Building on this, in 2011, Bhaduri et al. (2011) introduced the iORCA algorithm. It randomly 
selects a pivot from a dataset, calculates the distances between all objects and the pivot, and builds 
an index based on the sorted distances in descending order. When detecting outliers, it employs 
a “spiral” search of the k-nearest neighbors based on their distance in the index, terminating the 
process early using termination rules and achieving correct results. The iORCA algorithm boasts 
a low index construction time and high detection efficiency, making it a model for distance-based 
outlier detection algorithms.

With the Knorr outlier definition, Tao et al. (2006) carefully designed the memory allocation and 
devised the scan with prioritized flushing (SNIF) algorithm, which, assuming a memory capacity of 
1% of the dataset, requires only three scans to complete outlier detection. After recognizing that actual 
database management system memory capacity tends to be larger, they further optimized memory 
allocation to create an algorithm requiring only two scans of the dataset.

Vu and Gopalkrishnan (2009) combined clustering and the nested-loop algorithm to propose 
the MultI-Rule Outlier (MIRO) algorithm. This algorithm conducts outlier detection in two stages. 
It initially uses the K-means algorithm for clustering and eliminates non-outlier categories based on 
the clustering results. Subsequently, it applies the nested-loop algorithm to detect outliers within the 

Table 1. Outlier definitions and their characteristics

Outlier definition Characteristics of outlier definition

k-R outliers 
(DB(p,d))

The objects for which there are less than k other objects within distance R.

kNN distance sum outliers Top n objects whose sum of distance to the k nearest neighbors is greatest.

k-distance outliers Top n objects whose distance to the kth nearest neighbor is greatest.
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remaining dataset. Since the second stage focuses on a significantly smaller dataset, the algorithm 
exhibits favorable time complexity.

In contrast to MIRO’s two-stage approach, Chawla and Gionas (2013) concentrated on 
simultaneously conducting K-means clustering and outlier detection. He introduced the k-means-- 
algorithm, which addresses the challenging interplay between K-means clustering and outlier detection.

Szeto and Hung (2010) conducted a meticulous probabilistic analysis of the ORCA algorithm. 
They optimized the TOP n outlier threshold and the utilization of trimmed memory recycling, focusing 
on the size of data blocks loaded into memory buffers. These optimizations resulted in a substantial 
improvement in algorithm performance.

Various researchers have focused extensively on dealing with large-scale data. Angiulli and 
Fassetti (2007) introduced an algorithm called DOLPHIN. This algorithm maintains a certain number 
of data objects in memory and establishes an index, accelerating nearest-neighbor searches and 

Table 2. Outlier detection algorithms and their characteristics

Algorithm Characteristics of algorithm

NL Original nested loop algorithm without index and optimization.

ORCA Processes data in random order and uses a pruning rule that once an object’s current outlier degree falls 
below the threshold for the top-n outliers, that object is no longer considered a potential outlier.

iORCA Randomly selects a pivot from the dataset, calculates the distances between all objects and the pivot, and 
then sorts them in descending order for outlier detection.

SNIF Assumes a memory capacity of 1% of the dataset, requires only three scans to complete outlier detection.

MIRO Uses the K-means algorithm for clustering and eliminates non-outlier categories based on the clustering 
results, then applies the nested-loop algorithm to detect outliers within the remaining dataset.

K-means-- Simultaneously perform K-means clustering and outlier detection.

RCS Optimizes the update of cutoff value and the utilization of memory.

DOLPHIN Only requires two scans of the dataset by storing a portion of the dataset in the main memory.

SolvingSet 
Algorithm

Distributed outlier detection algorithm; uses a subset of the data set, called the solving set, to predict if 
new unseen objects are outliers.

DOoR Distributed outlier detection algorithm for multicore computer clusters connected on a ring topology.

SFC Uses space-filling curve indexing to search for approximate reverse k-nearest neighbors, resulting in 
nearly linear detection speed.

LEAP Outlier detection algorithms designed for high-volume data streams (Cao et al., 2014); applicable to all 
three major distance-based outlier definitions.

HIOD By selecting multiple support points, the dataset is mapped to the support point space, and then a Hilbert 
index is established, prioritizing the detection of data blocks in relatively sparse regions.

ADPOD An adaptive cutoff distance-based density peak pivot selection method applied to metric space outlier 
detection.

KFC Neighborhood consistency-based parameter k search aimed at selecting k for kNN-based outlier.

LOF Local outlier factor as the ratio of the average reachability density of an object’s neighborhood to its own 
reachability density.

UKOF Defines a KDE-based outlier factor (KOF) to measure the local outlierness score; effective for high-
volume data streams.

mRMRD An efficient unsupervised density-based subspace selection for outlier detection in the projected 
subspace; effective for high dimensional data.

BLDOD Local outlier detection method that can draw the neighborhood boundaries of the data points via 
Chebyshev inequality; effective for high dimensional data.
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achieving near-linear time complexity and I/O overhead reduction. In addition, Angiulli et al. (2006) 
extended their earlier Solving Set algorithm to propose a distributed outlier detection algorithm on a 
computer cluster architecture with a master node. The experiments conducted on an 11-node cluster 
yielded promising results.

Researchers at NASA Ames Research Center, including Bhaduri et al. (2011), proposed two 
distributed outlier detection algorithms for multicore computer clusters connected on a ring topology. 
They achieved favorable experimental results.

Additionally, Schubert et al. (2015) utilized space-filling curve indexing to search for approximate 
reverse k-nearest neighbors, resulting in a nearly linear detection speed. Cao et al. (2014) investigated 
outlier detection algorithms designed for high-volume data streams. In the context of growing data 
volumes, such outlier detection algorithms exhibit strong potential for practical applications.

Furthermore, optimizations for the iORCA algorithm have been proposed in recent years. Xu 
et al. (2016) proposed a fast metric space outlier detection algorithm based on Hilbert indexing. By 
selecting multiple pivots, they reduced spatial distortion and built a Hilbert index, prioritizing the 
detection of data blocks in relatively sparse regions. Subsequently, Xu et al. (2019) addressed the issue 
of unstable detection performance caused by the random selection of support points in the iORCA 
algorithm. They designed an adaptive cutoff distance-based density peak pivot selection algorithm 
and applied it to metric space outlier detection, achieving stable outlier detection performance with 
minimal support point selection time overhead.

For distance-based outlier detection algorithms, the choice of the parameter k, representing the 
number of nearest neighbors, is crucial. Yang et al. (2023) introduced the “neighborhood consistency-
based parameter k search” method to address this. This method is independent of other parameters, 
has linear time complexity, and exhibits good generality for various datasets and detectors.

Density-based outlier detection algorithms are essentially a subset of distance-based outlier 
detection algorithms. The key difference is that they target local outliers rather than global outliers. 
Breunig et al. (2000) introduced the concept of local outliers and the corresponding local outlier 
factor (LOF) detection algorithm. They argued that in some cases, local outliers are more important 
than global outliers, and conventional outlier detection algorithms are only effective in detecting 
global outliers, resulting in lower accuracy in detecting local outliers. They represented the local 
outlier factor as the ratio of the average reachability density of an object’s neighborhood to its own 
reachability density. Subsequently, they ranked the top n local outliers.

Liu et al. (2020) addressed the issue of imbalanced data distribution in different subsets of 
high-throughput data streams, proposing a method for local outlier detection in large-scale high-
throughput data streams based on kernel density estimation. They designed effective pruning strategies, 
significantly improving outlier detection speed.

The “curse of dimensionality” poses a severe challenge to outlier detection performance in 
high-dimensional data. Riahi-Madvar et al. (2021) utilized density-based unsupervised subspace 
selection for outlier detection in projected subspaces. They calculated the LOF for data points in the 
corresponding subspace. Experimental results demonstrated that this algorithm not only reduced 
computational complexity and execution time but also improved the accuracy of outlier detection.

Aydın (2023) employed inequalities to delineate neighborhood boundaries for data points and 
detected outliers by quantifying the density of their neighborhoods, yielding effective results. Table 
2 summarizes these outlier detection algorithms and their characteristics.

PRE-CUTOFF VALUE CALCULATION FOR METRIC 
SPACE OUTLIER DETECTION

As previously discussed, existing metric space outlier detection algorithms involve a limitation when 
detecting the first data block: They use a default outlier degree cutoff value of 0, which does not 
effectively exclude non-outliers. In this section, we introduce a pre-cutoff value acceleration method 
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for metric space outlier detection. Leveraging the distance triangle inequality, we designed a pre-cutoff 
value calculation method that does not require additional distance calculations.

Algorithm 1 consists of two functions: getKthNN from lines 1 to 26 and getPreCutoffValue from 
lines 27 to 41. In the provided pseudocode, index[] is a one-dimensional sorted array with a length 
of size, k is the k-th nearest neighbor parameter, and tmp is a temporary variable passed from outside 
the function, reducing unnecessary computation overhead.

The getKthNN function effectively applies an optimized binary search algorithm to a one-
dimensional sorted array. As shown in lines 3–4, if the object id to be processed is located at the 
beginning or end of the array, i.e., its index is 0 or size-1, then we can directly determine the position 
of its k-th nearest neighbor, which is at the index abs(id - k), where abs is the absolute value function. 

Table 3. Pre-Cutoff value calculation for metric space outlier detection

Algorithm 1: Pre-Cutoff Value Calculation Method

Input: index[], k, n, size
Output: c

1: 
2: 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41

getKthNN(index[], size, id, k, tmp)
start1←0, end1←0, start2←0, end2←0; 
if (id==0 || id==size-1) then
     return index[abs(id-k)];
start1←id-1, end1←id-k, start2←id+1, end2←id+k; 
if (id<k) then end1←0;
if (id>size-1-k) then end2←size-1;
Len1←start1-end1+1; 
Len2←end2-start2+1; 
if (len1>=k && dist(index[id],index[end1])<tmp || len2>=k && dist(index[id],index[end2])<tmp) then 
return 0;
   klen←k; 
   i←start1-min(len1, k/2)+1; 
   j←start2-min(len2, k/2)-1; 
   while (klen>1)
   if (index[i]>index[j]) then
   start2←j+1; 
   len2←end2-start2+1; 
   klen←klen-(j-start2+1); 
   else
   start1←i-1; 
   len1←start1-end1+1; 
   klen←klen-(i-start1+1); 
   if (klen==1) then
      return min(index[start1], index[start2]);
end
getPreCutoffValue(index[], size, k, n)
c←0, tmp←0, tmpDis←0; 
build minheap; 
for id = 0 upto size-1 do
tmpDis ←getKthNN(index[], size, id, k, tmp); 
if (tmpDis>0)
     if (minHeap.size<n)
     minheap.push(tmpDis); 
     else if (tmpDis>minheap.top)
     minheap.pop; 
     minheap.push(tmpDis); 
     tmp←minHeap.top; 
c ←minheap.top; 
return c;
end
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In addition, it is necessary to calculate the search range before and after id, i.e., on its smaller side, 
from start1 to end1, and on its larger side, from start2 to end2. It should be noted that, generally, the 
order is from small to large: end1, start1, id, start2, end2. Additionally, cases where id approaches 
the array boundary and does not have k elements must be handled (lines 5–9).

Next, in lines 10–11, the current pre-cutoff value tmp passed from outside the function comes 
into play. If the distance between id and any k-th nearest neighbor on either side is less than tmp, id 
can be excluded directly (by simply setting its pre-outlier degree to 0 and returning it), as its one-
dimensional outlier degree cannot be greater than tmp. The search length klen is then initialized as 
k (line 12), and comparisons are made at k/2–1 on both sides of id because the k-th nearest neighbor 
must be on the smaller side. The search length klen is updated, the search range is adjusted, and 
the binary search continues (lines 13–23) until klen = 1, at which point the k-th nearest neighbor is 
found (lines 24–25).

The getPreCutoffValue function primarily builds a min heap with a length of n (line 29), calling 
the getKthNN function to calculate the one-dimensional outlier degree (line 31). Objects with a one-
dimensional outlier degree greater than 0, when heap size is less than n, will be pushed into the heap 
sequentially (lines 32–34). Otherwise, when the length reaches n, only those with a one-dimensional 
outlier degree greater than the minimum element of the heap can be pushed into the heap. At the same 
time, the smallest element is removed to maintain the heap size of n, and the tmp value is updated 
(lines 35–38). After scanning the entire index[], the pre-cutoff value c is returned.

Algorithm Analysis
Time Complexity Analysis
The getKthNN function employs a variant of a binary search to search for the k-th nearest neighbor of 
the element at index id in the ordered array. Its time complexity is O(log k). The getPreCutoffValue 
function consists of two main operations: Firstly, it iteratively calls the getKthNN function, attempting 
to find the k-th nearest neighbor of each element in the index array. Since the array length is size, 
the time complexity of this part of the operation is O(size * log k). Secondly, it involves building 
a min-heap to maintain the n elements with the largest distances from their k-th nearest neighbors, 
i.e., the n elements with the highest pre-cutoff values. Because it requires traversing the array, and 
each element trying to enter the heap requires O(log n), this part of the operation would require at 
most O(size * log n). The combined time complexity of these two operations is O(size * log k + size 
* log n). However, given that k and n are typically very small constants, the pre-cutoff value (PCV) 
algorithm can be approximated to O(size), which implies linear time complexity.

Proof of Correctness of Outlier Detection Results
Overall Approach. Due to the triangular inequality of distances, calculating distances between each 
object in the dataset and a reference point maps them to one-dimensional space. In this one-dimensional 
space, distances between pairs of objects (one-dimensional space distances) are less than or equal to 
their actual distances in the multi-dimensional space. As a result, when searching for the k nearest 
neighbors of an object s

a
 in one-dimensional space, all k nearest neighbors’ one-dimensional space 

distances (computed using pdist() ) are less than or equal to their multi-dimensional distances 
(computed using dist() ). This leads to the conclusion that s

a
’s one-dimensional outlier degree is 

less than or equal to its multi-dimensional outlier degree. By extension, it is clear that the one-
dimensional outlier degrees of all objects are less than their multi-dimensional outlier degrees. By 
taking the n objects with the highest one-dimensional outlier degrees and using the smallest one-
dimensional outlier degree as the pre-cutoff value c, it can be similarly proven that c is less than or 
equal to the cutoff value of the multi-dimensional outlier degree. Using c to exclude non-outliers will 
not mistakenly exclude outliers, ensuring the correctness of the final results.

Proof Process. (1) Definitions and notations used in the proof:
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Let DS  be the dataset, p  be a randomly selected object in DS , namely pivot, and dist()  be 
the distance function. After calculating the distances between all objects in DS  and p  using the 
dist()  function, these distance values create a one-dimensional space based on p , referred to as 
pDS .

Let pdist()  be the one-dimensional space distance function (absolute difference), which is 
defined as pdist s s dist s p dist s p

1 2 1 2
, , ,( ) = ( )− ( ) . Due to the triangular inequality of distances, it 

holds that pdist s s dist s s
1 2 1 2
, ,( ) ≤ ( ) .

In addition, nn s DS
i
,( )  represents the i-th nearest neighbor of object s in the dataset DS , and 

w s DS
k
,( )  represents the outlier degree of object s in dataset DS  (for distinction, we refer to this 

as the multi-dimensional outlier degree). Correspondingly, the k-th nearest neighbor of object s in 
dataset DS  is referred to as the multi-dimensional k-th nearest neighbor.

Similarly, nn s pDS
i
,( )  represents the i-th nearest neighbor of object s in the one-dimensional 

space pDS , and w s pDS
k
,( )  represents the outlier degree of object s in the one-dimensional space 

pDS  (referred to as one-dimensional outlier degree). The k-th nearest neighbor of object s in pDS  
is referred to as the one-dimensional k-th nearest neighbor. Therefore:

Consider an object s
a

, and its k-th nearest neighbors in pDS , denoted as s
a1

, s
a2

, s
a3

, ..., s
ak

, 
where 1 ≤ i ≤ k, meaning s nn s pDS

ai i a
= ( ), .

By the triangular inequality of distances, we have: pdist s s dist s s
a ai a ai
, ,( ) ≤ ( ) .

Table 3 summarizes the notations and their description.
(2) First, we will prove that the one-dimensional outlier degree w s pDS

k a
,( )  of object s

a
 is less 

than or equal to the multi-dimensional outlier degree w s DS
k a

,( ) .
We will prove this in three cases based on whether the multi-dimensional k-th nearest neighbor 

nn s DS
k a

,( )  is the same as the one-dimensional k-th nearest neighbor nn s pDS
k a

,( ) :

① � , ,nn s DS nn s pDS
k a k a( ) = ( )

Proof:
Due to the triangle inequality in the metric space, we have:

pdist s nn s pDS dist s nn s DS
a k a a k a
, , , ,( )( ) ≤ ( )( ) .	

That is, w s pDS w s DS
k a k a

, ,( ) ≤ ( )  is proven.

② � , ,nn s DS nn s pDS
k a k a( ) ≠ ( ) , and nn s pDS nn s DS i k

k a i a
, , |( ) ∈ ( ) ≤ ≤ −{ }1 1

Proof:
Without loss of generality, assume that nn s pDS nn s DS

k a b a
, ,( ) = ( ) , where 1 1≤ ≤ −b k .

Then, we have dist s nn s DS dist s nn s DS
a b a a k a
, , , ,( )( ) ≤ ( )( ) , as well as	

pdist s nn s pDS dist s nn s DS
a k a a b a
, , , , ;( )( ) ≤ ( )( )  therefore	

pdist s nn s pDS dist s nn s DS
a k a a k a
, , , ,( )( ) ≤ ( )( ) , so that w s pDS w s DS

k a k a
, ,( ) ≤ ( )  is proven.
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③ � , ,nn s DS nn s pDS
k a k a( ) ≠ ( ) , and nn s pDS nn s DS i k

k a i a
, , |( ) ∉ ( ) ≤ ≤ −{ }1 1

Proof:
There must be nn s DS nn s pDS j k

i a j a
, , |( ) ∉ ( ) ≤ ≤{ }1 , where 1£ £i k . Without loss of 

generality, let us assume that the object is nn s DS
b a

,( ) , and further let it be the c-th nearest neighbor 
of s

a
 in pDS , nn s pDS

c a
,( ) , namely nn s DS nn s pDS

b a c a
, ,( ) = ( ) , where 1£ £b k , and c k> .

Then, it follows that dist s nn s DS dist s nn s DS
a b a a k a
, , , ,( )( ) ≤ ( )( ) , and	  

pdist s nn s pDS pdist s nn s pDS
a k a a c a
, , , ,( )( ) ≤ ( )( ) , and furthermore that 	

pdist s nn s pDS dist s nn s DS
a c a a b a
, , , ,( )( ) ≤ ( )( ) . Therefore, it holds that	  

pdist s nn s pDS dist s nn s DS
a k a a k a
, , , ,( )( ) ≤ ( )( ) , so that w s pDS w s DS

k a k a
, ,( ) ≤ ( )  is proven.

Combining the results from ① to ③, we can conclude that the one-dimensional outlier degree 
w s pDS
k a

,( )  of object s
a

 is less than or equal to the multi-dimensional outlier degree w s DS
k a

,( ) .

Table 3. Notations and description

Notation Description

k Number of neighbors for calculating outlier degree

n Number of outliers to detect

c Cutoff value, equal to the outlier degree of current nth outlier

dist Distance function

DS Dataset

p A randomly selected object in the dataset, also called the pivot

pDS A one-dimensional space produced from the distances between all objects in DS  and p  using the 
dist()  function

pdist() Distance function used in the one-dimensional space

nn s DS
i
,( ) The i-th nearest neighbor of object s in the dataset DS

w s DS
k
,( ) The outlier degree of object s in dataset DS

nn s pDS
i
,( ) The i-th nearest neighbor of object s in the one-dimensional space pDS

w s pDS
k
,( ) The outlier degree of object s in the one-dimensional space pDS

s
a

An object of pDS

s
ai The i-th nearest neighbor of object in the one-dimensional space
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Based on the generality of object s
a

, it can be inferred that the one-dimensional outlier degree 
of each object is less than or equal to its multi-dimensional outlier degree.

(3) According to the results from (1), it can be similarly proven that the cutoff value of a one-
dimensional outlier degree is less than or equal to that of a multi-dimensional outlier degree.

(4) The cutoff value of the multi-dimensional outlier degree, which is the outlier degree of the 
n-th multi-dimensional outlier, is used in this paper to exclude non-outliers with a pre-cutoff value 
less than or equal to the previously mentioned cutoff value. This will never result in false exclusions 
and thus guarantees the correctness of the detection results.

EXPERIMENTAL RESULTS AND ANALYSIS

This section begins with an introduction to the datasets used in the experiments, followed by an 
explanation of the experimental platforms and settings. Finally, it presents the experimental results 
along with a detailed analysis.

Experimental Datasets
In this paper, we used four real datasets, all obtained from the UCI Machine Learning Repository 
and Outlier Detection DataSets (ODDS). They are detailed as follows:

KDD Cup 1999 Dataset1: Originally sourced from the Defense Advanced Research Projects 
Agency (DARPA) of the United States Department of Defense, this dataset has been processed by 
Professor Sal Stolfo and others at Columbia University. This paper utilizes the 10% version of the 
TCP dataset, which consists of 190,065 records, each containing 42 attributes.

Shuttle Dataset2: This dataset originates from the National Aeronautics and Space Administration 
(NASA) and contains space shuttle data. It comprises 58,000 records, each having nine attributes.

HTTP Dataset3: Derived from the original KDD Cup 1999 dataset available in the UCI Machine 
Learning Repository, this dataset has been crafted by researchers as an anomaly detection dataset. It 
comprises 567,479 records, each containing three attributes.

Mammography data set4: This dataset, provided by Aleksandar Lazarevic, is now publicly 
available in openML. It contains 11,183 samples with 260 calcifications, with each record containing 
six attributes.

Experimental Platform and Settings
The experimental environment utilized a Windows 11 Professional 22H2 operating system running 
on an Intel i9-12900K CPU with 64GB of DDR5 memory. The experimental program was developed 
using Visual Studio 2022 Community and compiled in Release mode.

Unless otherwise specified, to facilitate comparisons with the benchmark algorithms iORCA and 
ADPOD, we kept the experimental parameters in this paper consistent with those algorithms. This 
includes setting the number of nearest neighbors (k) to 5, the intended number of detected outliers 
(n) to 30, and the data block size (m) to 1,000. Notably, since the PCV algorithm employs the same 
outlier definition as iORCA and ADPOD, the outlier detection results are also consistent with them. 
As a result, we did not conduct accuracy-related experiments in this paper.

We normalized all datasets using the min-max scaling method to map the data into the [0, 1] 
interval. We used the following distance function:

dist x x x x
i j

k

d

ik jk
, ,( ) = ( )

=
∑
1

d 	

where
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


	

Experimental Results and Analysis
To reduce experimental errors, we ran each experiment in this paper ten times, taking the average 
value as the final result. In each of the ten experimental runs, the iORCA algorithm randomly selected 
support points, while the ADPOD algorithm selected support points according to its own rules. To 
provide a point of comparison, we also forced the PCV algorithm to use the same support points. In 
other words, we compared whether the iORCA and ADPOD algorithms produced different results 
when applying the pre-cutoff value under precisely the same conditions.

The experiments initially tested the runtime of the iORCA and ADPOD algorithms, both before 
and after the application of the PCV algorithm, as a function of the dataset’s scale. To facilitate 
comparative analysis, we also recorded the time required to build an index, but the values were very 
small, and after applying the PCV algorithm, there was only an average increase of 1.76%. The total 

Figure 1. Running times on four datasets for various dataset sizes



International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

12

time spent on index construction only accounted for an average of 4.85% of the entire outlier detection 
time. Therefore, these results are not displayed in the figure.

Despite maintaining the same operating environment during the experiments, variations in 
operating system conditions and CPU frequency fluctuations can introduce some errors into the 
runtime measurements. On the other hand, for complex data types or high-dimensional data, distance 
calculations can be computationally expensive relative to other processing steps. As a result, we also 
tested the number of distance calculations for the iORCA and ADPOD algorithms, both before and 
after applying the PCV algorithm, in relation to changes in dataset size.

As expected, the PCV algorithm only computes the pre-cutoff value before applying the iORCA 
and ADPOD algorithms for outlier detection, and it does not require additional distance calculations. 
Therefore, when the PCV algorithm is applied alongside the outlier detection algorithms, the number 
of distance calculations only decreases and cannot increase. In the worst-case scenario, the number 
of distance calculations remains unchanged. The worst-case scenario refers to a situation in which 
the pre-cutoff value is too small compared to the outlier degrees of objects in the first data block of 
the dataset, rendering it ineffective at excluding non-outliers. Even in this worst-case scenario, the 
additional computational overhead incurred during index construction is minimal. The time and space 
requirements for outlier detection remain identical to those of the original algorithm since the PCV 
algorithm modifies the pre-cutoff value from 0 to a value greater than 0 during the detection process.

Figure 2. Distance calculation times on four datasets for various dataset sizes
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For the less-favorable experimental results, we can identify several contributing factors:

(1) 	 The size of the first data block as a proportion of the entire dataset was relatively low, and the 
algorithm did not promptly reach the stopping rule of the iORCA and ADPOD algorithms.

(2) 	 The dataset had a high dimensionality, and the PCV algorithm’s calculations were based on 
distance information that had been mapped to one dimension, which led to a loss of some of the 
original distance information while saving on computational costs.

(3) 	 The outlier degrees of objects in the first data block were generally higher than the pre-cutoff 
value, rendering the PCV algorithm ineffective in excluding non-outliers.

However, the PCV algorithm imposes minimal additional runtime overhead regardless of the 
specific conditions. This additional runtime is negligible compared to the overall runtime for outlier 
detection. Hence, the PCV algorithm can be safely applied to any outlier detection algorithm because 
its potential benefits far outweigh the incurred cost.

To gain a deeper understanding of the performance of the PCV algorithm, this study also 
conducted tests on the detection time for the first data block and the number of non-outliers excluded 
before and after applying the PCV algorithm to iORCA and ADPOD. As shown in Figure 3 and Table 
4, the experiments on the four datasets demonstrated that applying the PCV algorithm resulted in an 
average reduction of 23.54% in the detection time for the first data block. Moreover, it excluded an 
average of 365.5 non-outliers, accounting for 36.55% of the data in the first data block.

To further evaluate the performance of the PCV algorithm, we conducted experiments using 
the iORCA algorithm and the TCP and shuttle datasets as examples. The objective was to examine 
how the outlier detection time changes with varying parameters k and n before and after applying 
the PCV algorithm.

As seen in Figure 4, the runtime of the iORCA algorithm does not significantly increase with 
the increase in parameter k when applying the PCV algorithm, and in some cases, it even decreases. 
This behavior is related to the distribution of the dataset, as different values of k result in varying 
pruning efficiencies within the algorithm. For k values greater than 70, the algorithm’s runtime 

Figure 3. Running times of first data block on four datasets
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even decreases in the case of the shuttle dataset. Although the iORCA algorithm exhibits relatively 
stable runtime in the TCP dataset, after applying the PCV algorithm, a significant decrease in 
runtime occurs for k values greater than 65. Furthermore, it is evident that throughout the entire 
range of parameter k, the PCV algorithm consistently maintains a substantial reduction in the 
runtime of the iORCA algorithm.

As shown in Figure 5, with the increase in parameter n, the runtime of the iORCA algorithm 
gradually increases both before and after applying the PCV algorithm. However, with the assistance 
of the pre-cutoff values provided by the PCV algorithm, the efficiency of excluding non-outliers in 
the outlier detection algorithm is enhanced. Consequently, this results in reduced runtime compared 
to not using the PCV algorithm.

SUMMARY AND FUTURE RESEARCH

Summary
Distance-based outlier detection algorithms, especially metric space outlier detection algorithms, 
represented by the iORCA algorithm, are highly time-consuming when detecting the first data 
block due to the lack of outlier degree cutoff values that effectively exclude non-outliers and 
reduce the number of distance calculations. To address this issue, this paper proposed a pre-cutoff 
value calculation method called PCV, which allows calculating pre-cutoff values using existing 
index data (such as the distances between a randomly chosen pivot in the iORCA algorithm 

Table 4. Non-Outliers excluded from the first data block

Dataset iORCA iORCA-PCV ADPOD ADPOD-PCV

TCP 0 269.8 0 147.9

shuttle 0 491.1 0 411.9

http 0 607.6 0 591.9

mam 0 403.4 0 0

Figure 4. Running time with various k of iORCA and iORCA-PCV algorithm
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and all objects in the dataset) without additional distance calculations. These pre-cutoff values 
are then utilized for outlier detection in the first data block. Notably, this algorithm is suitable 
for accelerating not only the iORCA algorithm but also other distance-based outlier detection 
algorithms, such as ADPOD. Even if the original algorithm did not create a one-dimensional 
index, it can still benefit from a small amount of time spent building an index. Experimental 
results demonstrate the effectiveness of the PCV algorithm, which, when applied, reduces the 
runtime and the number of distance calculations for the iORCA algorithm by an average of 
14.59% and 15.73%, respectively. Even for the newer and more efficient ADPOD algorithm, 
the PCV algorithm provides reductions of 1.41% and 0.45%, respectively. The additional time 
spent on PCV calculations is negligible.

Future Research
In future research, we will explore using more pivots and calculating pre-cutoff values based on the 
distances between these pivots and all objects in the dataset in a multi-dimensional space. Utilizing 
more distance information in the multi-dimensional space will certainly yield larger pre-cutoff 
values, which are more effective in excluding non-outliers. However, this approach will require 
more time for calculations. Finding a balance between the yielded benefits and the associated costs 
is an important research question. Additionally, the choice of support points also influences the 
performance of pre-cutoff values, so we will investigate methods for selecting support points to 
enhance this performance.
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