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ABSTRACT

The increasing prevalence of business cases utilizing internet of things (IoT) analytics, coupled 
with the diversity of IoT analytics platforms and their capabilities, poses an immense challenge for 
organizations seeking to make the best choice of IoT analytics platform for their specific use cases. 
Aiming to characterize the capabilities of IoT analytics, this article presents a reference architecture for 
IoT analytics platforms created through a qualitative content analysis of online reviews and published 
implementation architectures of IoT analytics platforms. A further contribution is a taxonomy of the 
functional and cross-functional capabilities of IoT analytics platforms derived from the analysis of 
published use cases and related business surveys. Both the reference architecture and the associated 
taxonomy provide a theoretical basis for further research into IoT analytics capabilities and should 
therefore facilitate the evaluation, selection, and adoption of IoT analytics solutions through a unified 
description of their capabilities and functional requirements.
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INTRODUCTION

The Internet of Things (IoT), which connects physical objects with the virtual world, is considered 
one of the key technologies that enable and drive digital transformation, as the ability of IoT devices 
to capture and transmit data over networks and connectivity creates vast amounts of data that is 
generating substantial benefits for organizations (Marjani et al., 2017). The growing number of 
sensors, actuators and tags used in various areas of daily life, business and industry play a central 
role in a variety of applications characterized by generic terms such as “Industry 4.0”, “Smart City” 
and “Smart Home” (Ben-Daya, Hassini, & Bahroun, 2019; Yassine, Singh, Hossain, & Muhammad, 
2019). These describe complex fields of application that not only attempt to digitize and optimize 
existing business and industrial processes using smart devices, but also create entirely new business 
and consumer application scenarios (Adi, Anwar, Baig, & Zeadally, 2020). Economic analysts predict 
that by 2023, 30% of companies in various industries will fully deploy on-premise IoT technologies and 
that the size of the global IoT market will grow to $800 billion (Gartner, 2019; Lheureux et al., 2020).
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With the increasing number of embedded sensors, actuators and things connected to the Internet, the 
amount of data generated by IoT devices is also growing rapidly. Today, this data is becoming a critical 
asset that provides valuable opportunities for companies to grow, innovate and sustain a competitive 
advantage (Garg & Garg, 2020; Siow, Tiropanis, & Hall, 2018). However, it also poses an immense 
challenge in terms of data management, storage and analysis. In this context, data analytics of IoT data 
plays a crucial role in today’s IoT domains and will be even more relevant in the future (Adi et al., 2020). 
The main objective of IoT analytics is to generate knowledge and context from data streams generated 
by a large number of heterogeneous devices to enable various IoT applications (Yassine et al., 2019). 
IoT analytics is described as a process in which a large amount of IoT data is analyzed to uncover trends, 
patterns, correlations and valuable insights to support decision making at both strategic and operational 
levels (ur Rehman et al., 2019). Depending on the type of IoT applications and business requirements, 
such analysis can be performed either by humans or by artificial intelligence and machine learning (AI 
/ ML) in real time or over a longer period of time (Gupta & Jain, 2020; Minteer, 2017).

As IoT continues to flourish and grow in importance, the value of IoT analytics platforms as an integral 
part of the IoT ecosystem is gaining increasing interest with implications for almost all areas of technology 
and business. IoT analytics platforms are specialized platforms for collecting, processing, storing, and 
analyzing data from IoT devices (Gartner, 2019). Today, many industries leverage IoT analytics platforms 
and services to understand real-time consumer needs, improve responsiveness, streamline processes and 
identify innovative business models to support their digital transformation strategy (Ben-Daya et al., 2019; 
Nicolescu, Huth, Radanliev, & De Roure, 2018). The prominence of IoT analytics platforms can also be 
witnessed from the size of the associated market. For example, the Boston Consulting Group estimates 
that in 2020 a total of $250 billion will be spent worldwide on the Internet of Things, of which $15 billion 
will be spent on IoT analytics platforms (Hunke et al., 2017). Due to this market potential, more than 450 
providers are currently competing with each other (Gartner, 2019; Hunke et al., 2017; Williams & Lueth, 
2017). This diversity, combined with the fact that IoT analytics represents complex solutions and different 
platforms have different capabilities, leads to an opaque and fragmented market (Williams & Lueth, 
2017). As a result, prospective adopters are faced with the fact that despite this diversity, no single IoT 
analytics platform is equally well suited for every IoT application scenario (Siow et al., 2018). In addition, 
organizations seeking to exploit the benefits of IoT applications while continuing to maintain their existing 
IT infrastructure are confronted with the challenge of making the best choice of IoT analytics platform 
for their specific business requirements from the wide range of candidates available on the market (Fati, 
Jaradat, Abunadi, & Mohammed, 2020; Soldatos, 2017).

The capabilities of IoT analytics platforms are an essential evaluation and selection criterion 
(Siow et al., 2018). However, in order to understand the capabilities of the various IoT analytics 
platforms available on the market, practitioners have to compile and evaluate numerous documents 
with heterogeneous descriptions at different levels of abstraction from different sources. Therefore, any 
comparison of the capabilities of different IoT analytics platforms is not easily possible on this basis. 
For many companies planning to develop smart products and services, the key issue facing them at 
present is how to make it easier to establish or expand IoT activities in a practical and sustainable way 
(Nicolescu et al., 2018; Sethi & Sarangi, 2017). Numerous technical and organizational challenges 
are involved, from device management and data storage to data analysis and development of smart 
services (Brous, Janssen, & Herder, 2020). Furthermore, a wide range of different technologies 
and heterogeneous architectures have been used in the implementation of IoT analytics use cases 
(Mahdavinejad et al., 2018; Marjani et al., 2017; Pääkkönen & Pakkala, 2020; Ray, 2018). With the 
goal of helping to solve this problem, this work has mainly focused on describing the architectures 
of individual contributions from several major vendors (e.g., Amazon, Microsoft, and Google) and 
has examined specific end-user applications such as machine health monitoring or factory efficiency 
or effectiveness (OEE) analysis (Siow et al., 2018). At the same time, work merging the individual 
architectures into a coherent reference architecture is limited, although early contributions exist 
(O’Donovan, Bruton, & O’Sullivan, 2016; Pradeep, Balasubramani, Martis, & Sannidhan, 2020; 
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Sethi & Sarangi, 2017; Tesch, Brillinger, & Bilgeri, 2017; ur Rehman et al., 2019). Therefore, the 
development of a technology-independent reference architecture and the classification of associated 
implementation technologies and services would be valuable for the exploration and deployment of 
IoT analytics applications and systems in enterprises.

The main contribution of this article is to provide a unified description of the capabilities of IoT 
analytics platforms through a coherent reference architecture and taxonomy by analyzing the voice 
of IoT and data analytics practitioners. The potential capabilities were primarily identified through 
a qualitative content analysis of online user reviews collected from Gartner.com, a leading research 
and consulting firm that publishes online reviews of enterprise IT software and services (Gartner, 
2019). In addition to online reviews, data was compiled from a variety of resources, including relevant 
documents and literature, official websites, product brochures, and company surveys. The resulting 
capabilities were then integrated and organized into a hierarchical taxonomy upon which a reference 
architecture was built. The goal of the reference architecture and associated taxonomy is to enable 
better understanding and articulation of insights into the capabilities of IoT analytics platforms. They 
are also intended to provide practical guidance for practitioners to analyze the system functionality of 
IoT analytics platforms and create a foundation for comparing the functional capabilities of various 
IoT analytics platforms available in the market. The findings from this article offer several important 
theoretical and practical implications and should therefore serve as a valuable resource for gaining 
insight into the design, evaluation, and application of IoT analytics platforms in organizations.

The remainder of this article is structured as follows. Section 2 examines related work on the 
specifics of IoT analytics, as well as previous work on taxonomies and reference architectures for IoT 
analytics platforms. Section 3 discusses how a taxonomy and reference architecture has been developed 
to characterize the capabilities of IoT analytics platforms using a qualitative content analysis of online 
reviews and relevant literature. Section 4 then illustrates how the developed reference architecture can 
be applied in projects to evaluate and select the most appropriate IoT analytics platform from a range 
of candidates. Section 5 presents the implications for research and practice, followed by a discussion 
of the limitations and prospects for future research. Finally, Section 6 concludes this article.

RELATED WORK

Specifics of IoT Analytics
To understand the specifics and nuances of IoT analytics, it is helpful and relevant to divide it into two 
parts and define both IoT and data analytics separately. The term “Internet of Things” (IoT) describes 
the network of physical objects (things) embedded in sensors, software and other technologies that 
enable objects to communicate, collect data and exchange information with other devices and systems 
over the Internet (Boyes, Hallaq, Cunningham, & Watson, 2018; Dorsemaine, Gaulier, Wary, Kheir, 
& Urien, 2015; Elijah, Rahman, Orikumhi, Leow, & Hindia, 2018). The combination of sensor and 
actuator devices enables the sharing of information across platforms through a unified architecture 
and the development of a common operating landscape to enable innovative applications (Adi et al., 
2020; Belhadi, Zkik, Cherrafi, Yusof, & El fezazi, 2019; Bibri, 2018). With affordable computing 
solutions, the cloud, big data, and mobile technologies, physical objects can share and collect data 
with minimal human intervention. In this hyper-connected environment, IoT technologies can record, 
monitor, and analyze every interaction between connected objects. The physical world meets and 
collaborates with the digital world (Dai, Wang, Xu, Wan, & Imran, 2019; Elijah et al., 2018).

The IoT’s inherent ability to create a network of smart sensors capable of collecting and analyzing 
valuable information across multiple environments is driving a wide range of applications. Common 
applications of IoT include smart manufacturing, predictive and predictive maintenance, smart energy 
grids, smart cities, connected and smart logistics, and smart digital supply chains (Oztemel & Gursev, 
2020; Siow et al., 2018; Sjödin, Parida, Leksell, & Petrovic, 2018; Tesch et al., 2017; Yassine et 
al., 2019). Recent studies show that the development of smart devices is not stagnating (Banerjee & 
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Woerner, 2017; Bansal & Kumar, 2020; Nicolescu et al., 2018). On the contrary, there will be more 
than 500 billion smart devices on the market worldwide by 2030, generating sales of up to $1.5 trillion 
(Mahdavinejad et al., 2018; Muccini, Spalazzese, Moghaddam, & Sharaf, 2018). As IoT continues to 
expand in the marketplace, companies can benefit from the tremendous business value it can deliver. 
With the advent of the cloud and related technologies such as data analytics, artificial intelligence and 
machine learning, companies across a wide range of industries can achieve new levels of automation, 
increase business process productivity and efficiency, create new revenue opportunities and develop 
new business models (Bibri, 2018; Biswas, Dupont, & Pham, 2017; Elijah et al., 2018).

The term data analytics, as originally coined by Davenport and Harris (2007), refers to a set of 
business intelligence and analytics (BI&A) technologies that are primarily concerned with data mining 
and statistical analysis. Although several definitions are presented in the literature (e.g., Davenport 
& Harris, 2007; Davenport & Kim, 2013; Eggert & Alberts, 2020), the general and common idea 
remains the same. Chen, Chiang, and Storey (2012) described data analytics as the process of deriving 
knowledge and actionable insights from data using quantitative, statistical, or predictive models to 
help executives, managers and other business users make informed business decisions. Although 
there is a synergistic relationship between data analytics and IoT that allows them to leverage large 
amounts of data collected from various sources in a structured and unstructured format, only through 
IoT analytics systems can companies combine and integrate all types of IoT data to gain insights at 
all levels of the enterprise (Côrte-Real, Ruivo, & Oliveira, 2020; Guilfoyle, 2020). One of the most 
distinctive features of IoT analytics is its ability to analyze IoT data, which is typically unstructured 
in nature. This makes it unsuitable for traditional analytics and business intelligence tools designed 
to process structured data. IoT data comes from devices that often record relatively noisy processes 
(e.g., temperature, motion, or sound). Data from these devices can often have significant gaps, 
corrupted messages, and erroneous readings that need to be cleaned up prior to analysis (Grossman, 
2018; Velosa & Kutnick, 2016). IoT analytics enables the processing of a large amount of data on the 
fly and facilitates the storage of data in various storage technologies that are automatically saved for 
later processing or reintegration for another application. Given the large amount of unstructured data 
collected directly from web-enabled devices, IoT analytics implementations require instant analysis 
with real-time queries to help organizations quickly gain insights, make quick decisions, and interact 
with people and other devices (Marjani et al., 2017).

With the ever-growing wealth of data generated by IoT devices, IoT analytics is rapidly becoming 
a key enabler for decision-making at both strategic and operational levels. By providing insights into 
various areas such as customer relationships, marketing, inventory management, product and service 
development, and other core business areas, the use of IoT analytics platforms enables innovation and 
the creation of sustainable competitive advantage (Ben-Daya et al., 2019; Shakeel, Mardani, Chofreh, 
Goni, & Klemeš, 2020). By combining IoT sensors and data analytics technologies, companies can 
increase operational efficiency, reduce costs, develop value-added services, and ultimately increase 
profitability (Goni et al., 2020). A recent survey by SAS (SAS, 2020) found that 93% of companies 
that invested in IoT and data analytics achieved cost savings, while 91% of companies that invested 
in IoT improved their competitive advantage. Data analytics and IoT are capable of transforming 
our economy and society. Their contribution is expected to be of great importance in transforming 
many companies into digital enterprises in the era of digitalization and Industry 4.0 (Côrte-Real et 
al., 2020; Ibarra, Ganzarain, & Igartua, 2018; Tesch et al., 2017).

According to the requirements of IoT applications, different types of analytics are used. These 
types and levels of analytics are discussed in the relevant literature under the categories of real-time, 
offline, storage, business intelligence (BI), and big data analytics (Adi et al., 2020; Marjani et al., 
2017). Typical data mining methods applied to data related to IoT and intelligent services include 
cluster analysis, classification, association analysis and regression analysis. Machine learning and 
artificial intelligence methods are also helpful in the analysis of mass IoT data. Approaches such as 
the Lambda architecture describe the analytical approach to big data using data mining and different 
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variants that can be used in this context (Kolajo, Daramola, & Adebiyi, 2019). However, with the 
exception of a few large information-centric companies such as Microsoft, Amazon, and Google that 
are actively using IoT analytics, most large and mid-sized companies are still in an embryonic stage 
of adoption and are struggling to understand and define their IoT analytics strategy. In addition, many 
business leaders are hesitant to invest in IoT analytics because their past experiences with business 
intelligence and analytics initiatives have shown unsatisfactory results (Côrte-Real et al., 2020).

Taxonomies and Reference Architectures for IoT Analytics Platforms
In the context of IoT analytics, taxonomies play an important role in research and practice because 
classifying IoT analytics capabilities through a taxonomy helps organizations understand and analyze 
individual characteristics of different IoT analytics platforms (Alkhabbas, Spalazzese, & Davidsson, 
2019). The taxonomy of IoT analytics can also help structure and organize otherwise fragmented 
concepts and enable researchers to postulate about the relationships between these concepts 
(Pääkkönen & Pakkala, 2015). At the same time, the taxonomy of IoT analytics can be understood 
both as a standalone framework and as a foundation for the development of further taxonomies (ur 
Rehman et al., 2019). In addition, the taxonomy can serve as a reference architecture that typically 
describes and allows for a variety of different implementations of IoT analytics and supports its goal 
of standardization (Siow et al., 2018). Reference architectures can in turn be used for screening, 
evaluating, and comparing different IoT analytics solutions (Pääkkönen & Pakkala, 2020).

The architectural concept of IoT analytics comprises several design descriptions based on the 
abstraction and identification of IoT application areas. It provides a reference model that describes the 
relationships between different IoT environments, such as smart traffic, smart home, smart transport, 
and smart health. Several IoT analytics architectures can be found in the literature (Adi et al., 2020; 
da Cruz, Rodrigues, Al-Muhtadi, Korotaev, & de Albuquerque, 2018; Sethi & Sarangi, 2017; Siow 
et al., 2018). For example, da Cruz et al. (2018) presented an IoT analytics architecture with cloud 
computing at its core and a model of end-to-end interaction between different stakeholders in a 
cloud-centered IoT framework to enable better comparison with other IoT analytics platforms. This 
architecture provides a seamless, ubiquitous collection, analysis, and presentation of information 
through a unifying architecture of IoT. However, the current architecture focuses on IoT in terms of 
communication and less on the analytical capabilities and functionality of IoT analytics.

Several previous studies have focused on the development of taxonomies or reference architectures 
for IoT analytics platforms (e.g., Crook & Vesset, 2020; Guth et al., 2018; Siow et al., 2018; ur 
Rehman et al., 2019). Among these studies are the two articles by Sethi and Sarangi (2017) and 
Marjani et al. (2017), which build on each other and derive an abstract software architecture for IoT 
analytics platforms from a small number of research projects. The work of da Cruz et al. (2018), Guth 
et al. (2018) and Siow et al. (2018) suggests different reference architectures for IoT and the data 
analytics ecosystem. In these reference architectures, IoT analytics platforms are integrated with other 
components of an IoT ecosystem only at a relatively high level of abstraction, with limited reference 
to their capabilities. Drawing upon a reference architecture for Industry 4.0 and using a questionnaire 
survey, Nagy, Oláh, Erdei, Máté, and Popp (2018) identifies three different categories of IoT analytics 
that differ in their architecture and assigns 13 selected IoT analytics platforms to these categories. 
The article by Hodapp, Remane, Hanelt, and Kolbe (2019) presents a taxonomy for business models 
of IoT analytics platforms that only mentions their capabilities in passing.

While several studies have characterized IoT analytics systems by taxonomies, these taxonomies 
are either defined on an abstract level (e.g., Alkhabbas et al., 2019; da Cruz et al., 2018; Guth et al., 
2018) or take a specific perspective or category of IoT analytics systems (e.g., Marjani et al., 2017; 
Nemeth, Ansari, Sihn, Haslhofer, & Schindler, 2018; Pääkkönen & Pakkala, 2020; Soldatos, 2017). 
Alkhabbas et al. (2019) proposed a taxonomy for facilitating the understanding of IoT and analytics 
ecosystems. The taxonomy classifies IoT devices based on their architectural characteristics while 
considering security aspects. In addition, the authors provided a procedure to validate the completeness, 
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accuracy, and timelessness of the proposed taxonomy. While they focused on individual IoT devices, 
this article adopts a systematic perspective that leads to a more holistic view of IoT analysis systems. 
In addition, this article has conducted a systematic review that analyzes various taxonomies found 
in the literature. A number of conceptual models for IoT analysis systems have been proposed in the 
literature. For example, Alexopoulos, Koukas, Boli, and Mourtzis (2018) presented an architecture for 
IoT analytics systems to support the analysis phases of services in industrial product-service systems. 
Yassine et al. (2019) presented a conceptual model for applications of IoT analytics in smart homes and 
fog computing. Following Elijah et al. (2018), ur Rehman et al. (2019) proposed a conceptual model 
for business-critical IoT analytics systems. Although these models capture the capabilities identified 
in this article to varying degrees, none of them offers a comprehensive examination of the capabilities 
of IoT analytics platforms and their specific characteristics from the perspective of practitioners.

A similar picture emerges when reviewing the non-academic literature. For example, the 
software development documentations of Azure IoT analytics (Microsoft, 2018), AWS IoT Analytics 
(Amazon, 2020), and SAS IoT analytics (SAS, 2020) describe reference architectures that cannot be 
regarded as generally valid and only describe the ecosystem of the respective in-house IoT analytics 
platforms. The white paper by Crook and Vesset (2020) describes a taxonomy and an associated 
reference architecture for IoT analytics platforms; however, it does not describe the methodology 
used in its creation, making it unclear whether IoT analytics platforms can be fully described based 
on this taxonomy. The same restriction applies to the abstract architecture for IoT analytics platforms 
described in a white paper by Hilton (2018). In a market study by Gartner (2019), a wide range of 
functional and non-functional characteristics of IoT analytics platforms are presented based on a survey 
of various providers. Similarly, the market study by IoT Analytics (2017) classifies the functional 
and non-functional capabilities of eight IoT analytics platforms for manufacturing and industry 4.0 
into an architectural reference model based on a survey. Table 1 presents a comparison of the above-
mentioned preliminary work and classifies it systematically. To the best of the author’s knowledge, 
the taxonomy and reference architecture proposed in this article, which is intended to provide a 
holistic and integrative view of IoT and data analytics, has not yet been thoroughly investigated in the 
current literature. Therefore, this article aims to develop a generally applicable and comprehensive 
taxonomy based on widely used, commercially available IoT analytics platforms, using qualitative 
content analysis as a research methodology.

RESEARCH METHODOLOGY

The main objective of this study is to provide a unified description of the capabilities of IoT 
analytics platforms through a taxonomy and reference architecture based on an analysis of the 
voice of practitioners and related business surveys of popular IoT analytics platforms. To this end, a 
qualitative content analysis approach was used to extract, analyze, and classify the textual content of 
practitioners’ evaluations and feedback on their perceptions and experiences in using IoT analytics 
platforms. Qualitative content analysis is a strand of a research method that enables “the subjective 
interpretation of the content of textual data through the systematic classification process of coding 
and identifying themes or patterns” (Hsieh & Shannon, 2005). According to Nickerson, Varshney, 
and Muntermann (2013), qualitative content analysis is characterized by its ability to not only reveal 
object-related individual elements, but also allow replicable and valid conclusions to be drawn from 
the data to provide knowledge, new insights, and a description of phenomena. A key advantage 
of qualitative content analysis is that it enables processing and inductive use of large amounts of 
textual data to find evidence. It also enables an in-depth analysis of context and process elements as 
well as activities of the key users involved in the implementation process (Daradkeh, 2019a, 2019b; 
Daradkeh & Sabbahein, 2019). The qualitative content analysis method was deemed appropriate for 
this study because it allows for the flexible and adaptable collection of subjective judgments guided 
by in-depth exploration and analysis. Moreover, this study assumes that the opinions of practitioners 
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Table 1. Related work with taxonomies or reference architectures for IoT analytics platforms.

Publication Type of 
Publication

Methodology FC NFC #IoT TAX RA #CTRA Purpose

(da Cruz et 
al., 2018)

Journal 
article

Systematic 
literature 
review and 
reference 
modelling

✓ ✓ 33 – ✓ 5 Reference architecture for IoT 
analytics systems

(Siow et al., 
2018)

Journal 
article

survey, 
reference 
modelling

✓ ✓ 13 – ✓ 36 Categorization of analytical 
approaches and proposal of 
a layered taxonomy of IoT 
analytics

(ur Rehman et 
al., 2019)

Journal 
article

Reference 
Modelling

✓ ✓ 4 – ✓ 5 Categorization of IoT analytics 
platforms based on their 
capabilities

(Alkhabbas et 
al., 2019)

Journal 
article

Reference 
Modelling

✓ ✓ 8 ✓ – 6 Comparison of different IoT 
analytics platforms using 
taxonomy

(Sethi & 
Sarangi, 
2017)

Journal 
article

survey, 
reference 
modelling

✓ ✓ 8 – ✓ 10 Comparison of different IoT 
analytics platforms using 
reference architecture

(Ray, 2018) Journal 
article

Requirement 
analysis, 
reference 
modelling

✓ ✓ 24 – ✓ 39 General description of the 
capabilities of IoT analytics 
platforms

(Adi et al., 
2020)

Journal 
article

Requirement 
analysis, 
reference 
modelling

✓ ✓ 6 – ✓ 37 General description of the 
functionality of IoT analytics 
platforms

(Marjani et 
al., 2017)

Journal 
article

survey, 
reference 
modelling

✓ ✓ 13 – ✓ 36 Comparison of different IoT 
analytics platforms using 
reference architecture

(Mahdavinejad 
et al., 2018)

Journal 
article

survey, 
reference 
modelling

✓ ✓ 13 – ✓ 36 Description of the capabilities of 
IoT analytics platforms

(Zschörnig, 
Wehlitz, & 
Franczyk, 
2020)

Journal 
article

Reference 
Modelling

✓ ✓ 4 – ✓ 5 Categorization of different IoT 
analytics platforms

(Saleem & 
Chishti, 2019)

Journal 
article

survey, 
reference 
modelling

✓ ✓ 13 – ✓ 36 Comparison of different IoT 
analytics platforms

(Somani, 
Zhao, 
Srirama, & 
Buyya, 2019)

Journal 
article

Reference 
Modelling

✓ ✓ 8 ü – 6 Comparison of different IoT 
analytics platforms

(Cirillo, Wu, 
Solmaz, & 
Kovacs, 2019)

Journal 
article

Reference 
Modelling

✓ ✓ 8 ✓ – 6 Comparison of different IoT 
analytics platforms

(Guth et al., 
2018)

Book 
Chapter

Systematic 
literature 
review and 
reference 
Modelling

✓ ✓ 4 – ✓ 5 Comparison of different IoT 
analytics platforms using 
reference architecture

(Hodapp et 
al., 2019)

Book 
Chapter

Reference 
Modelling

✓ ✓ 190 ✓ – 6 Comparison of different IoT 
analytics platforms using 
reference architecture

Table continued on next page
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and experts can be of immense value in situations where knowledge or theory is incomplete, as in 
the case of exploring and classifying the capabilities of IoT analytics platforms.

Following Nickerson et al. (2013), an iterative hybrid process combining deductive and inductive 
analysis methods was applied. This allows for different perspectives to be adopted for gaining insights 
from the textual content. This process was accompanied by elements of qualitative content analysis 
from Vaismoradi et al. (2013), as shown in Figure 1. First, a set of criteria was defined to include 
or exclude a review and identify the units of analysis (i.e., individual themes) in selected online 
reviews. Second, an appropriate coding protocol and a process for collecting data from online reviews 
were developed in line with the objective of this study to identify from practitioners’ feedback the 
capabilities of IoT analytics platforms that could influence the organization’s evaluation and decision 
to adopt IoT analytics platforms. To improve the reliability of the assessment, both human coding 
and text analytics software (NVivo) were used to analyze the data. Two coders were trained based 
on a protocol developed specifically for this study. Finally, the results obtained were validated for 
consistency and inter-coder agreement reliability using Krippendorff’s alpha (Krippendorff, 2012). 
In general, a Krippendorff’s alpha (α) of 0.80 is considered an acceptable level of reliability in social 
science research (Krippendorff, 2012). Two professors of information systems were also assisted in 
checking the validity and consistency of the results.

Data Collection
Using methodological triangulation (Carter, Bryant-Lukosius, DiCenso, Blythe, & Neville, 2014), 
data were collected from multiple sources, including online reviews contributed and published by 
IoT analytics practitioners, as well as evaluation studies and enterprise surveys conducted by leading 
vendors of IoT analytics solutions and platforms. The online reviews used in this study were collected 
from Gartner.com, a leading research and advisory firm that publishes consumer-generated reviews 
for a wide range of enterprise IT software and services (Daradkeh, 2019b). This platform provides 
peer-generated online reviews with verified and reliable reviews of IoT analytics platforms and 
solutions published by IT and business professionals from various industries (Gartner, 2019). The 
resulting dataset consisted of 887 online reviews contributed by IoT specialists, data scientists and 

Publication Type of 
Publication

Methodology FC NFC #IoT TAX RA #CTRA Purpose

(Bauer et al., 
2013)

Book 
Chapter

Reference 
Modelling

✓ ✓ 8 ✓ – 6 Comparison of different IoT 
analytics platforms using 
reference architecture

(Crook & 
Vesset, 2020)

Market 
research

Survey ✓ ✓ 33 ✓ ✓ 6 Description of the capabilities of 
IoT analytics platforms

(Velosa & 
Kutnick, 
2016)

Market 
research

Survey ✓ ✓ 24 ✓ ✓ 6 Comparison of different IoT 
analytics platforms

(Microsoft, 
2018)

Business 
Report

Not Explicit ✓ ✓ 1 – ✓ n.a. Description of a specific IoT 
platform, namely Azure IoT 
Analytics, based on different 
architecture configurations.

(Amazon, 
2020)

Business 
Report

Not Explicit ✓ ✓ 1 – ✓ 13 Description of a specific IoT 
platform, namely AWS IoT 
Analytics, based on different 
architecture configurations.

(SAS, 2020) Business 
Report

Not Explicit ✓ ✓ 1 – ✓ 13 Description of a specific IoT 
platform, namely SAS Analytics 
for IoT, based on different 
architecture configurations.

FC - Functional capabilities, NFC - Non-functional capabilities, #IoT - Number of IoT analytics platforms or use cases considered, TAX - Taxonomy, RA - 
Reference architecture, #CTRA - Number of capabilities in the taxonomy or reference architecture, n.a. - Not applicable.

Table continued
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analysts, and IoT developers for ten IoT analytics platforms, including Azure IoT Analytics, AWS IoT 
Analytics, Oracle Stream Analytics, and Cisco Data Analytics. Although a wide range of IoT analytics 
platforms are available, the sample was narrowed down to the most popular IoT analytics platforms 
as described in Gartner’s 2019 Magic Quadrant for IoT Analytics Platforms (Gartner, 2019). Owing 
to their widespread popularity among practitioners and across various industries, these IoT analytics 
platforms had also received a relatively large number of online reviews and evaluations compared to 

Figure 1. Taxonomy development process (adapted from Nickerson et al. (2013) and Vaismoradi, Turunen, and Bondas (2013))
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other platforms available in the market. In selecting IoT analytics platforms, this study considered 
not only their estimated annual revenue but also their placement in existing rankings by consulting 
and market research firms and the number of citations in academic and non-academic publications 
with equal weighting (see Tables 2, 3, and 4).

To supplement practitioner evaluations and online reviews, data from a variety of published 
use cases and associated company surveys, such as official websites, product brochures, project-
related documentation, and market studies, were collected and analyzed using inductive reasoning, 
as recommended by Nickerson et al. (2013). A total of 113 business studies and publications were 
evaluated and analyzed. These publications describe the capabilities of the most widely used IoT 
analytics platforms from leading vendors, including Amazon, Google, Huawei, IBM, Microsoft, 
PTC, and SAP (see Table 5). All these publications aimed to better identify the leading IoT analytics 
platforms and understand the relationships between the different capabilities of IoT analytics platforms, 
such as IoT devices and different categories of analytics. This provided further evidence to confirm 
and complement practitioner evaluations and online reviews, while enabling data validation during 
the data analysis process (Daradkeh, 2019b)

Table 2. Selection criteria to identify the most commonly used IoT analytics platforms

Selection criteria Sources

Number of online 
reviews

Online reviews from Gartner.com, written and published by IoT specialists, data scientists and 
analysts, as well as IoT developers from various industries, who share their perceptions and 
experiences with using IoT analytics platforms from major vendors such as Amazon, Google, 
Huawei, IBM, Microsoft, PTC and SAP (source: https://www.gartner.com/reviews/market/
industrial-iot-platforms)

Annual turnover Estimated externally generated IoT analytics Platform Revenue 2019 (MUSD) according to the 
market study by

Placement in 
rankings

Six market studies by different consulting and market research companies, which contain a total 
of 18 different rankings of IoT analytics platforms (see Table 3)

Number of citations Systematic literature analysis on the state of the art of IoT analytics platforms, in which more 
than 150 academic and non-academic publications were evaluated and analyzed.

Table 3. Ranking of IoT analytics platforms by leading consulting and market research companies

Publisher Title No. of 
Rankings

References

IoT Analytics IoT analytics platform comparison: how 
the 450 providers stack up

1 (Williams & Lueth, 2017)

Experton Group Industrie 4.0/IoT Vendor Benchmark 2017 10 (Vogt, Landrock, & 
Dransfeld, 2017)

Forrester The Forrester Wave™: Industrial IoT 
analytics Platforms, Q4 2019: The 14 
providers that matter most and how they 
stack up

1 (Pelino & Miller, 2019)

Gartner Magic Quadrant for Industrial IoT and 
analytics Platforms

1 (Goodness et al., 2018)

International Data 
Corporation (IDC)

IDC’s Worldwide IoT Platforms and 
Analytics Taxonomy

1 (Crook & Vesset, 2020)

Pierre Audoin Consultants 
(PAC)

PAC RADAR IoT Platforms in Europe 
2018: Vertical IoT analytics platforms are 
shaking up the market

7 (Vogt & Balgheim, 2018)
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Coding Method
Based on the research objective of this study and the IoT analytics platforms identified through the 
content analysis, an initial category scheme was derived from taxonomies developed in previous 
studies (Alkhabbas et al., 2019; Siow et al., 2018; ur Rehman et al., 2019). Based on this, previously 
unknown concepts were derived from the textual content in a subsequent round of inductive analysis 
and combined into new categories. The ending conditions for the iterative process were adopted from 
Nickerson et al. (2013) to ensure that the categories emerged are unique and free of overlap and 
that no categories were added, changed or removed in the last iteration. At the end of the analysis 
process, a final (revised) taxonomy is created and checked for the fulfillment of the final conditions. 
However, if the ending conditions are not met, a next iteration of the analysis process starts again. 
The theoretical saturation was already reached in the inductive process when the documents of the 
sixth provider were evaluated, but to ensure reliability, the documents of the seventh provider were 
also fully evaluated and analyzed (see Table 3). The coding process was performed throughout the 
entire analysis process with computer assistance using NVivo.

Table 4. Overview of the most commonly used IoT analytics platforms

Rank IoT analytics Platform Provider

1 Oracle IoT Cloud Oracle

2 PTC ThingWorx PTC

3 AWS IoT Analytics Amazon

4 Azure IoT Analytics Microsoft

5 SAP Leonardo IoT SAP

6 ThingSpeak ThingSpeak

7 SAS Analytics for IoT SAS

8 IBM Watson IoT IBM Corporation

9 Google Cloud IoT Analytics Google

10 Huawei IoT Analytics Platform Huawei Technologies Co.

Table 5. Total number of online reviews and publications collected and analyzed.

Rank IoT Software Platform No. of online reviews No. of publications

1 Oracle IoT Cloud 180 7

2 PTC ThingWorx 123 16

3 AWS IoT Analytics 112 12

4 Azure IoT Analytics 99 12

5 SAP Leonardo IoT 78 12

6 ThingSpeak 72 16

7 SAS Analytics for IoT 65 12

8 IBM Watson IoT 60 15

9 Google Cloud IoT Analytics 55 6

10 Huawei IoT Analytics Platform 43 5

Total 887 113
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The coding process was then proceeded to identify the rank and frequency of capabilities of IoT 
analytics platforms in online reviews and other relevant publications used in this study. In a review, for 
example, the reviewer could refer to a particular capability several times or with different expressions. 
To support the calculation of the frequency intensity, NVivo was used to randomly validate the content 
of the data. Although NVivo has the advantage of analyzing contextual keywords from large amounts 
of text, it cannot replace the flexibility, intuitiveness and creativity of human coders (Daradkeh, 2019b; 
Daradkeh & Sabbahein, 2019). Therefore, to obtain relatively reliable results and to minimize bias, 
two coders were employed to manually interpret the initial results from contextualized documents. 
The first coder manually identified all themes and highlighted all text content describing potential 
capabilities of IoT analytics platforms. The second coder then manually examined the first coder’s 
notes on the original documents. In the case of disagreement, the two coders discussed the issue and 
came to an agreement. After identifying all potential capabilities, the two coders then grouped them 
based on the context and nature of capabilities of IoT analytics platforms into two main categories: 
functional capabilities and cross-functional capabilities. The final agreement between the coders in this 
process, as measured by Krippendorff’s alpha coefficient, was 82.4 percent, indicating an acceptable 
level of inter-rater agreement between the coders (Krippendorff, 2012). All results obtained and the 
agreement between coders were also validated by two professors from IS.

RESULTS

Taxonomy for IoT Analytics Platforms
Using the methodology described in the previous section, a hierarchical taxonomy was developed 
to uniformly describe the capabilities of IoT analytics platforms, as shown in Table 6. A distinction 
was made between functional capabilities that build on each other (stacked on top of each other) 
and cross-functional capabilities that are used across all application areas (arranged side by side and 
spanning the functional capabilities). The functional capabilities of IoT analytics platforms include 
business integration and modeling, application development, data modeling, data visualization, data 
analytics, data and storage management, event management, data transformation, device management, 
and device connectivity. Conversely, the cross-functional capabilities include information security and 
operations, management, and maintenance. All capabilities were ranked by frequency, with higher 
frequency implying higher value by both practitioners and main vendors. This taxonomy is described 
in more detail below based on the corresponding defined reference architecture.

Reference Architecture for IoT Analytics Platforms
To further describe the capabilities of IoT analytics platforms, the developed taxonomy was transformed 
into a reference architecture by mapping the previously identified capabilities to the components 
of an abstract software architecture, while maintaining the hierarchical arrangement according to 
the categorization procedure used in the research methodology. Specifically, the components of the 
architecture were arranged based on their content and characteristic proximity to each other and 
based on the flow of data and processing from an IoT device through the IoT analytics platform to 
other existing enterprise applications. The resulting reference architecture is shown in Figure 2 and 
described in detail below.

Functional Capabilities of IoT Analytics Platforms
Business Integration and Modeling
In the context of business integration and modeling, the IoT analytics platform is capable to connect 
the IoT devices to the existing IT infrastructure of the companies involved in the IoT use cases. In the 
simplest case, connectivity is established to existing EIS (enterprise information systems), whereby 
applications from various areas such as customer relationship management (CRM), enterprise 
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Table 6. A hierarchical taxonomy of the capabilities of IoT analytics platforms.

IoT analytics Capabilities Dimensions Characteristics Freq. Ranking

Functional Capabilities Business integration and 
modeling

53 28

Enterprise information system 
(EIS) connectors

42 35

Business to business (B2B) 
communication

4 62

Messages to make or respond to 
requests

31 43

Application development 46 32

Apps and app templates 6 60

Model-driven development 7 59

Visual and low-based programming 43 33

Programming tools 49 31

APIs and API management 85 19

Data modeling 112 15

Entities 199 11

Ontologies 3 63

Digital twins 116 14

Mapping and matching 95 17

Data visualization 63 23

Metrics and KPIs 25 46

Charts 2 64

Maps 10 58

Dashboard 33 37

Repots 6 60

Data analytics 90 18

Descriptive analytics 22 51

Diagnostic analytics 11 56

Real-time analytics 29 44

Predictive analytics 33 37

Prescriptive analytics 18 53

Artificial intelligence and machine 
learning

33 37

Data and storage management 224 10

Relational databases 226 9

Non-relational databases 55 27

Distributed ledger 27 45

Data lake 25 46

Object storage 40 36

Geospatial data management 60 24

Table continued on next page
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resource planning (ERP), manufacturing execution system (MES) or supply chain management 
(SCM) are connected as required. For electronic communication across company boundaries (B2B 
communication), for example, different electronic data interchange (EDI) standards such as ANSI 
ASC X12, Electronic Business XML (ebXML), RosettaNet or UN/EDIFACT must be supported 
(Kulvatunyou, Oh, Ivezic, & Nieman, 2019). In addition, it is important to support different types 
of messaging such as e-mail or SMS for interaction between devices and enterprise applications.

Application Development
Different applications of IoT analytics have different requirements and entail different types of 
analytics, which should be developed as efficiently and effectively as possible. Therefore, developers 
are usually supported in the development of IoT analytics with pre-developed and reusable application 
templates (apps and app templates), programming tools such as development environments or software 

IoT analytics Capabilities Dimensions Characteristics Freq. Ranking

Event management 229 8

Event types management 24 48

Rules management 66 22

Event and rules processing 242 6

Message brokering 242 6

Data transformation 56 26

Data conversion and normalization 24 48

Data filtering 19 52

Data aggregation 33 37

Data enhancement 11 56

Data and information fusion 13 55

Device management 268 5

Device provisioning and discovery 98 16

Device configuration and control 60 24

Device software management 33 37

Device monitoring and logging 51 30

Device connectivity 299 4

Device adapters 43 33

Communication protocols 306 3

Edge processing 85 19

Device simulation 24 48

Cross-Functional Capabilities Information security 310 2

Identity and access management 397 1

Encryption 130 12

Data protection and data privacy 122 13

Intrusion detection system 15 54

Operations, Administration and 
Maintenance

70 21

Platform administration 33 37

Platform monitoring and logging 53 28

Table continued
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development kits, and suitable application programming interfaces (web service APIs) such as 
RESTful APIs (Ray, 2018; Sethi & Sarangi, 2017). In addition, application development can benefit 
from special tools that support the following types of software development:

•	 In model-driven development, modelling languages, modelling tools, and code generators are 
used to automatically generate executable software from models.

•	 In visual programming, visual development environments and languages are used to develop analytics 
applications through the arrangement and combination of graphical elements rather than through classic, 
text-based source code, using the drag-and-drop operating principle known in graphical user interfaces.

•	 In flow-based programming, where software is composed of different components using visual 
development environments, the components are linked together in a message-based manner.

A common feature of visual and flow-based programming is that, following the mash-up idea of 
Web 2.0, software development is done by combining existing content and applications from different 
sources via open programming interfaces.

Data Modeling
The different requirements associated with different IoT use cases also affect the area of data modeling. 
On the one hand, the entities to be modeled differ from application to another. On the other hand, the 
same entities and their properties may be modeled differently in different use cases. For example, it may 
be necessary to model entities such as people, systems, or machines, and the IoT devices used within an 

Figure 2. Reference architecture for IoT analytics platforms
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IoT use case may represent other connected entities. Based on this, ontologies and digital twins (Boje, 
Guerriero, Kubicki, & Rezgui, 2020; Moder, Ehm, & Jofer, 2020) can be used for these purposes:

•	 An ontology is used to represent, name and define the categories and properties of, and the 
relationships between, objects, data and entities (Greco, Ritrovato, & Vento, 2020; Rosen, von 
Wichert, Lo, & Bettenhausen, 2015).

•	 A digital twin is used as a model of a present or future entity of the real world, which describes 
its properties on the basis of real data and simulates its behaviour on the basis of algorithms and 
simulations, thus closing the gap between the real and virtual world (Kritzinger, Karner, Traar, 
Henjes, & Sihn, 2018; Qi & Tao, 2018). In this context, a distinction is made between device twins 
for IoT devices, object twins for objects, asset twins for monitoring and production management, 
spatial twins as a virtual model of the physical environment of an IoT application (e.g. buildings 
at different locations consisting of several floors to which several rooms are assigned) and digital 
human twins for humans (Kritzinger et al., 2018).

In addition, data modeling must not only provide the ability to link different entities such as people, 
objects, rooms, or buildings, but also allow for the capture of possible changes in these relationships 
over time. In this context, mapping is used to manage the relationship between two entities over time, 
based on the identifiers of these entities. Based on this, a matching process must examine current and 
past relationships between entities and verify which entities are or were associated with a known ID 
(Tao, Zhang, Liu, & Nee, 2019).

Data Visualization
Data visualization is used to visually prepare, display, and communicate data generated by IoT devices 
using key performance indicators (KPIs), charts, and maps such as traffic maps, aerial imagery, 
and satellite imagery, which in turn can be combined and summarized in dashboards and reports, 
depending on the type and goal of the data to be displayed (ur Rehman et al., 2019). A dashboard 
has the advantage of making everything visible at a glance while providing context. In the face of 
upstream big data, dashboards based on IoT data provide interactive access to the organization’s 
data and processes. This means that decision-makers and stakeholders always have the up-to-date 
information they need to optimally implement ideas and develop strategies on the fly or in the future.

Data Analytics
In the context of data analytics, various analysis techniques are used to generate relevant and actionable 
insights from the data available in a company, which also includes data collected via IoT devices, to 
support decision-making in the company. In the context of Industry 4.0, companies are using data 
analytics to make their production more efficient, further develop products and enable new analytics-
based services. In particular, a distinction is made between descriptive analytics, diagnostic analytics, 
real-time analytics, predictive analytics, and prescriptive analytics, each of which answers different 
questions of increasing complexity to increase the value of the information obtained (Siow et al., 
2018; ur Rehman et al., 2019). IoT solutions using descriptive analytics methods describe current 
machine conditions. Diagnostic analytics methods work deductively on this basis. They aggregate 
collected historical data with visualizations and support process optimization. Predictive methods 
are characterized by an inductive approach, which enables them to predict what will happen based 
on existing data with probabilities. Prescriptive analytics methods are the supreme discipline of 
data analytics today. They determine suitable solutions based on current data and taking various 
scenarios into account. In addition, artificial intelligence and machine learning methods are used for 
data analysis, where computers behave as if they had some kind of human intelligence. In particular, 
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machine learning methods are used to identify correlations in existing data sets with the help of 
learning processes and make predictions based on these findings (Adi et al., 2020).

Data and Memory Management
Data and storage management includes relational databases, non-relational databases, distributed 
ledgers, object storage, and spatial databases. It mainly provides create, read/retrieve, update, delete 
operations for both structured and unstructured data (Vongsingthong & Smanchat, 2015). Depending 
on the IoT use case, it may be necessary to manage very large amounts of data and evaluate both current 
data over short periods of time as well as historical data over longer periods of time. In addition to 
these operations, the geospatial data management handles spatial queries, verifies spatial coordinates, 
and performs location searches, route planning, coordinate transformations and time zone conversions 
(Hu & Xu, 2019; Karkouch, Mousannif, Al Moatassime, & Noel, 2016).

Event Management
The aim of event management is to monitor business processes in real time in order to detect deviations 
between the planned target state and the actual state at an early stage that may have negative or positive 
effects. This is necessary to achieve faster response times, reduce possible consequential costs, minimize 
the probability of occurrence of critical events and limit negative effects through preconceived response 
patterns (da Cruz et al., 2018). In this context, IoT analytics platforms serve the following purposes:

•	 Event types management is used to classify and distinguish between events of different types, 
such as alarming events or confirmatory events.

•	 Rules management is responsible for managing business rules, which can be modeled as formal 
if-then constructs with multiple preconditions in the if part and defined reactions in the then part.

•	 In event and rule processing, status messages from IoT devices are translated into events via a 
target/actual comparison by evaluating business rules through rule engines.

•	 Message switching enables the forwarding of events in the form of messages to interested persons 
or IT systems via the implementation of the publish/subscribe design pattern and thus leads to 
a loose coupling of applications.

Data Transformation
In data transformation, data from different sources such as different IoT devices is unified and converted 
into a standardized data format through data conversion and data normalization. In addition, irrelevant 
data is reduced and condensed through data filtering and data aggregation, while different types of 
relevant data are combined with complementary data such as master data through data aggregation. 
Similar types of relevant data are also merged through data and information fusion to achieve higher 
data quality (Halakarnimath & Sutagundar, 2020; Karkouch et al., 2016).

Device Management
Device management is responsible for managing a large number of IoT devices (da Cruz et al., 2018) 
and includes the following tasks:

•	 Device provisioning and discovery is responsible for the description and management of IoT 
devices and uses, for example, reusable templates to make devices of the same type accessible 
and available more quickly. For further simplification, device groups can be defined if required, 
which can be used to transfer tasks to be performed to a large number of devices simultaneously.

•	 Device configuration and device control is responsible for the configuration of different properties 
and the transmission of commands to control IoT devices according to the specific requirements 
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of a specific IoT application. This includes, for example, determining the frequency within which 
an IoT device transmits status information.

•	 The device software management is responsible for the secure update of the firmware or application 
software on an IoT device. This usually has to be carried out and monitored via a radio-based air 
interface. It may also be necessary to manage different versions of a firmware or application software.

•	 The knowledge of current and past device states is a basic condition for the detection and correction 
of failure states as well as for the maintenance of the operation of IoT devices. In this context, 
device monitoring is used to detect and monitor the current device state, while device logging 
is used to create a log of device states, which can also be used to trace past changes and events.

Device Connectivity
The purpose of device connectivity is to ensure bidirectional communication between IoT devices 
and the IoT software platform. This involves interacting with a large number of different IoT devices 
that use different communication protocols (Ray, 2018). Examples of communication protocols from 
the IoT area are AMQP (Advanced Message Queuing Protocol), CoAP (Constrained Application 
Protocol) and MQTT (Message Queuing Telemetry Transport). Furthermore, for different types of 
IoT devices different device adapters are provided. These adapters are used to capture the IoT devices 
and normalize the messages exchanged over them to allow easy integration into a company’s existing 
IT infrastructure. Depending on the IoT use case and the IoT devices used, it may also make sense 
to use special runtime environments for IoT devices to enable decentralized data processing at the 
edge of the network directly on IoT devices. Finally, a device simulation allows IoT applications to be 
developed and tested without connecting real IoT devices, thus accelerating development and start-up.

Cross-Functional Capabilities of IoT Analytics Platforms
Information Security
Information security must be ensured in all areas of an IoT analytics platform. As part of identity 
and access management, it must be ensured that access to certain IT resources and data only takes 
place after successful authentication of the identity of an authorized person, application or hardware 
component and after verification of the associated access rights through authorization (Radanliev et 
al., 2018). In addition, sensitive data must be protected by encryption, compliance with data protection 
and privacy and related privacy standards must be ensured, and possible threats and attacks must be 
detected and prevented with the help of an intrusion detection system (Atlam & Wills, 2020).

Operation, Management and Maintenance
The issue of operations, management and maintenance includes other capabilities that are used in 
all areas of an IoT analytics platform:

•	 Platform administration includes the configuration and maintenance of the IoT analytics platform.
•	 Knowing the current and past platform states is a basic requirement for detecting and correcting 

error conditions and maintaining the operation of an IoT analytics platform. In this context, platform 
monitoring is used to capture and monitor the current platform state, while platform logging is used 
to create a log of the platform state that can also be used to track past states and events.

Practical Application of the Reference Architecture
An important practical application of the reference architecture and associated taxonomy in projects 
is to evaluate and select the most appropriate IoT analytics platform from a set of candidates and 
match it with company-specific requirements.
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Evaluation and Selection of Projects during the Screening Phase
In industrial standard software, endeavors aimed at evaluating and selecting the most suitable software 
solution from a number of candidates are typically carried out in phases lasting between 18-45 weeks 
or 4-10 months (Stantchev, Hoang, Schulz, & Ratchinski, 2008), depending on the application (see 
Figure 3). Similarly, the duration of a project to evaluate and select an IoT analytics platform from 
a number of candidates is estimated to be 9 months, while an associated implementation project, 
which includes not only the selection decision but also the integration of the IoT analytics platform 
and associated IoT devices into the existing infrastructure and its transition to operational use, is 
estimated to take 15 months (IoT Analytics, 2017).

The use of the reference architecture can be particularly useful in the screening phase described in 
Figure 3, which aims to filter out the relevant candidates from those previously prepared in a market study 
by running through various filtering steps until the remaining candidates are reduced to a manageable 
number. Conceivable filtering steps would be, for example, narrowing down the search to the most important 
providers according to the available rankings of well-known market research and consulting companies 
(see Table 3). Another filtering step could be based on selected knock-out criteria and the subsequent 
application of a multi-criteria decision-making process that evaluates and ranks the remaining candidates 
taking into account various relevant functional and non-functional capabilities weighted by the decision 
makers involved according to their requirements (Stantchev et al., 2008).

Comparison and Alignment of IoT Analytics Platforms Capabilities
In addition to the possibility of using selected capabilities from the reference architecture as knockout 
criteria, the reference architecture developed in this article enables the analysis and comparison of 
different IoT analytics platforms by providing a uniform description of their capabilities and system 
functionality. When evaluating and selecting the most suitable IoT analytics platform for an enterprise-
specific use case, it is essential to compare the capabilities of different IoT analytics platforms while 
matching them with the requirements posed by a specific use case. Previous studies (see Table 1) have 
focused on the capabilities of different IoT analytics platforms based on reference architectures, but 
provide little guidance for simultaneously comparing the capabilities of different IoT analytics platforms 

Figure 3. Phase model for the evaluation and selection of industrial standard software (adapted from Stantchev et al. (2008))
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with enterprise-specific requirements. The approach proposed in this article is based on the developed 
reference architecture and includes both a comparison of the capabilities of different IoT analytics 
platforms and a comparison with the required functionality from an application and enterprise perspective.

Figure 4 describes an example scenario for a hypothetical requirements profile and a hypothetical 
IoT analytics platform. It shows how the reference architecture can be used to compare application-
specific requirements with the capabilities supported by an IoT analytics platform by coloring each 
capability differently depending on whether it is required or not and whether it is supported or not. 
For example, the dark green color highlights capabilities that are required by the application and 
supported by the IoT analytics platform, while the red color highlights capabilities that are required by 
the application but not supported by the IoT analytics platform. When the capabilities of the various 
IoT analytics platforms under consideration are described in this way as part of an evaluation and 
selection project using the reference architecture, this uniform description leads to benchmarking of 
the various candidates against each other.

Evaluation and Ranking of IoT Analytics Platforms
The uniform description of the capabilities of IoT analytics platforms using the reference architecture 
can also be used to evaluate the functionality of different IoT analytics platforms in comparison to 
the functionality required by the application, thereby enabling to classify and rank the different IoT 
analytics platforms accordingly. For such an evaluation, the following measures are proposed, which 
should be calculated for each candidate:

Figure 4. Comparison of the application-specific requirements with the capabilities supported by an IoT analytics platform
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•	 pIoTc
p  
=  Proportion of capabilities supported by the IoT analytics Platform p .

•	 pReqc
p  
=  Proportion of capabilities required by the application and supported by the IoT 

analytics Platform p .
•	 cos

p  
=  Cosine similarity which measures the similarity between the application-specific 

capabilities required and those supported by the IoT analytics platform p .

The cosine similarity, which is widely used in information retrieval and data mining (Han, 
Kamber, & Pei, 2012; Sohangir & Wang, 2017), is defined as a measure of the similarity between 
two non-zero vectors a  and b  as follows:
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Both the capabilities required by the application and the capabilities supported by an IoT analytics 
platform p  can be represented as binary vectors for the calculation of e cosine similarity. This 
representation is based on all n ∈   capabilities contained in the reference architecture, as follows:

•	 Vector a .  for capabilities required by the application: a a a a
n

= …( )1 2
, , , , with a

i
∈ { }0 1,  and 

n ∈  , where a
i
= 0 , if capability i  is not required and a

i
= 1  if capability i  is required with

� Ni ∈  and i ≤ n .
•	 Vector b

P
 for the capabilities supported by the IoT analytics platform  p : b b b P

P p p pn
= …( )1 2

, , ,  

with b O
Pi
∈ { },1 �and n ∈  , where b

Pi
= 0  if capability i  is not supported and b

Pi
= 1  if 

capability i is supported with i ∈   and i ≤ n .

Based on the vectors generated in this way, the cosine similarity cos a b
p P�
,( )  is always between 

0  and 1 , where the value 0  is obtained for exactly oppositely directed vectors and the value 1  is 
obtained for exactly identically directed vectors; i.e. with maximum match between the capabilities 
required by the application and those supported by the IoT analytics platform p . In other words, the 
value 1  results exactly when the IoT analytics platform p  supports exactly the capabilities required 
by the application. Therefore, the cosine similarity is useful for decision makers who only need a 
subset of all capabilities defined in the reference architecture and for whom the exact coverage of 
these required capabilities is more important than the proportion of total supported capabilities or 
the proportion of supported and required capabilities.

Based on these considerations, the illustrative example in Figure 4 shows the following ratios: 
pIoTc

p �
%= 70 6, , pReqc

p �
%= 88 2,  and cos

p
= 0 858, . As described earlier, during the evaluation 

and selection of the most suitable IoT analytics platform from a set of candidates, corresponding 
ratios would have to be calculated for all candidates in order to classify and rank them. Furthermore, 
it is worth noting that although the capabilities of an IoT analytics platform are undoubtedly an 
important evaluation and selection criterion, in practice other non-functional capabilities must be 
considered in an integrative manner in the decision-making process. Therefore, the use of a multi-
criteria decision-making process that combines the key measures for the assessment of functional 
capabilities presented in this article with other relevant non-functional capabilities and organizational 
characteristics is beneficial.
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DISCUSSION

The use of IoT analytics platforms has increased rapidly in various industries due to the proliferation 
and ubiquity of IoT devices that continuously generate huge amounts of data. However, as there is 
a wide range of IoT analytics platforms that offer a variety of different capabilities, companies and 
business decision makers face significant challenges in evaluating and selecting the best IoT analytics 
platform for their use cases, while maintaining a desired level of performance and functionality. Given 
that there is no ‘one-size-fits-all’ platform currently available, this research addresses this growing 
and important issue by developing a unified description of the most prominent capabilities of IoT 
analytics platforms through a taxonomy and reference architecture based on practitioners’ viewpoint. 
Compared with other studies in the area of IoT analytics, this article leverages online reviews and 
relevant business and market studies of different IoT analytics platforms as its main data source. It also 
deals with the research problem from the perspective of a relatively large number of IoT specialists, 
data scientists and analysts as well as IoT developers from various industries. Thus, this article not only 
provides a theoretical basis for further research into the emerging problem of the evaluation, selection 
and adoption of IoT analytics, but also offers an actionable guidance for practical implementation.

Implications for Research
From a theoretical standpoint, this study extends prior research on IoT analytics by deriving the 
capabilities of IoT analytics platforms in detail with the help of a qualitative content analysis based 
on widely used platforms available on the market and describes them in the form of a taxonomy and 
reference architecture. In doing so, a distinction is made between functional capabilities that build 
on each other, which are arranged within the reference architecture based on their content proximity 
and their relationships to each other, and cross-functional capabilities that are used across all areas 
of an IoT analytics platforms. The taxonomy and reference architecture presented in this article can 
serve as a central reference source for researchers to better understand and empirically investigate the 
identified capabilities and their relative importance for the success of IoT analytics in organizations.

The ðndings from this study show that data transformation and data-related capabilities have taken 
a great deal of interest among practitioners in their evaluation, selection and adoption of IoT analytics 
platforms. Among the most important capabilities influencing practitioners in the adoption decision 
of IoT analytics platforms like data modeling, visualization, analytics, and management, information 
security and entity management are emphasized in previous studies (e.g., Adi et al., 2020; Belhadi 
et al., 2019; Ben-Daya et al., 2019; Côrte-Real et al., 2020; Elijah et al., 2018; Guilfoyle, 2020); 
indicating that these capabilities have a significant impact on the process of IoT analytics adoption. 
Other relevant capabilities also appeared that have not been discussed in previous studies such as 
device management and connectivity. In addition, the continuous development and technological 
advances have led to the emergence of new capabilities such as cloud services support which could 
not have emerged without the advent of cloud computing technology. Also, the Information security 
and quality of platform administration and monitoring emerged here due to the unique features of 
IoT analytics.

From a methodological perspective, this article demonstrates the applicability of qualitative 
content analysis techniques to understand the capabilities of IoT analytics platforms, which can be easily 
extended to other topics and technology contexts. Most previous research using qualitative methods has 
relied extensively on research-based tools such as surveys and focus groups to collect data on users’ 
experiences and perceptions. In addition, the literature has mainly focused on a relatively reciprocal 
subset of capabilities for predicting the adoption of IoT analytics and focused on a single organization. 
However, in the current business ecosystem, organizations are increasingly interconnected, and users’ 
perceptions and experiences can be affected by many factors. The unsupervised nature of online 
software reviews provides in-depth understanding of the diverse perceptions and usage patterns of 
users without the interference of solicitation. Content analysis and other text mining techniques are 
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powerful analytical tools to extract social and business meaning from the extensive and voluntary 
user data. The current article can be used as an example of a practical application of content analysis 
to understand practitioners’ behaviors and perceptions, and addresses concerns about the declining 
enthusiasm for the use of qualitative content analysis in IoT analytics studies (Alvelos, Teixeira, 
Ramos, & Xambre, 2020; Siow et al., 2018).

Implications for Practice
The findings from this article also have practical implications for organizations seeking to promote 
the widespread adoption and implementation of IoT analytics platforms. They also provide a 
practical framework for managers not only in the early adoption, but also in the implementation and 
follow-up of IoT analytics applications. An exhaustive vendor search is not a practical solution for 
enterprises looking for a suitable IoT analytics platform. This is where companies are currently facing 
major challenges. In order to implement their own IoT initiatives efficiently and sustainably, it is 
particularly important to make the best choice of IoT analytics platform that fits their own business 
requirements and needs. In addition to the diversity and heterogeneity of IoT analytics platforms 
and their capabilities, the lack of standardized terminology and comparable information also makes 
it difficult to choose the right platform. This article is aimed at companies that seek to offer smart 
products or services to their customers using IoT and analytics solutions or expand their engagement 
in this area. The purpose of this article is to provide these companies with an objective insight into the 
most important capabilities of IoT analytics so as to make them comparable on the basis of specific 
categories. As such, this article can serve as an evaluation and selection tool when searching for a 
suitable IoT analytics platform to develop customized smart products and services. With the insights 
provided in this article, companies can tangibly reduce the number of vendors contacted directly, 
enter into detailed discussions in a much more informed manner, and overall improve the effort and 
chances of success in the search for a suitable IoT analytics platform.

An important criterion for the adoption of IoT analytics platforms by business decision makers 
is the capabilities and functional requirements supported by the platform. Potential adopters and 
organizations are more likely to use the platform that provides them with a full range of capabilities 
and functions relevant to their business needs. They are looking for IoT analytics platforms that enable 
them to maximize the value of the IoT data they collect, reach new customers, improve customer 
satisfaction, and open the door to entirely new markets. The complexity of IoT analytics platforms is 
also an issue for practitioners, but it is not as important as the security and capabilities of the system. 
Practitioners are more willing to accommodate some difficulties if the IoT analytics tool provides 
them with important needed analytics and reports for their work. Identifying and disseminating best 
practices for deploying IoT analytics technologies in operational environments can also help share 
and observe the value that a particular IoT analytics platform can provide.

The results presented here should be directly applicable in business use cases, as the taxonomy 
and associated reference architecture enable companies to align IoT analytics capabilities with 
business requirements in a much more systematic way. Especially in the early stages of IoT analytics 
development, it enables the construction of the key components of an IoT analytics ecosystem. It also 
helps to identify the competencies required to leverage the IoT analytics at an early stage within the 
company. The reference architecture presented in this article can be viewed as an effective tool during 
IoT analytics development to identify the strengths and weaknesses of IoT analytics platforms. It helps 
to evaluate which capabilities the IoT analytics platform shares with other competing platforms and 
which capabilities can serve as a unique selling point. In this way, differentiation potentials can be 
identified, and companies can drive the targeted, strategic differentiation of their own IoT analytics 
applications on the market.
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Limitations and Future Research
The results of the present work are nevertheless subject to various limitations. It should be emphasized 
that the qualitative content analysis conducted is limited to the most widespread IoT analytics platforms 
available on the market, which were selected on the basis of the number of online reviews, estimated 
annual revenue, placement in existing rankings by consulting and market research companies, and 
the number of citations in scientific and non-scientific publications. This provides potential starting 
points for further research. At the same time, the iterative taxonomy development process used here 
allows for an extension of the presented taxonomy and the associated reference architecture. On the 
one hand, looking at IoT analytics platforms from niche vendors could provide further insights. On 
the other hand, platforms that have already been examined could be re-examined after a sufficient 
period of time has elapsed in order to adequately represent them even as development progresses.

Furthermore, it should be noted that the evaluation and selection of an IoT analytics platform must 
consider not only the functional capabilities of the platform, but also non-functional characteristics such 
as the vendor, available support services, associated software license, business model used, and costs 
associated with acquiring and operating the software (Daradkeh, 2019b). In this context, multi-criteria 
decision support procedures could leverage the results presented here and extend them with non-functional 
properties to develop a complete procedure for evaluating and selecting IoT analytics platforms.

CONCLUSION

As the IoT industry continues to proliferate and the number of connected devices grows exponentially, 
organizations are struggling to make sense of the wealth of data generated by connected IoT devices. 
In this data-rich environment, IoT analytics has emerged as a key to digital transformation, offering 
analytical capabilities to provide enterprises with actionable knowledge and insights for their decision-
making. While previous research on IoT analytics has focused on the evaluation and selection of IoT 
analytics platforms, there has been limited research on IoT analytics adoption and the capabilities 
that are important to drive the widespread adoption of IoT analytics platforms from a practitioner 
perspective. In addition, previous research characterizing IoT analytics has resulted in a fragmented 
picture and a lack of common understanding of IoT analytics systems and their constituent parts. 
To address this gap, this article provides a unified description and categorization of IoT analytics 
capabilities through a hierarchical taxonomy and reference architecture based on a qualitative content 
analysis of the voice of practitioners.

The approach can be readily applied to other IoT domains, providing a systemic means to assess 
the growing and increasingly multidisciplinary body of knowledge. The hierarchical taxonomy and 
reference architecture presented in this article can serve as a theoretical foundation for future research 
to explore the relative importance of different capabilities to the adoption of IoT analytics technologies, 
and as an actionable guide for practitioners. This study is one of the few studies in organizational 
and management sciences that used qualitative content analysis to gain insights from a broad set 
of software online reviews of various IoT analytics platforms. From a theoretical perspective, this 
study contributes to the overall understanding of IoT analytics capabilities and the importance of 
aligning these capabilities with business requirements. From a methodological perspective, this study 
demonstrates the design, applicability, and value of inductive and deductive reasoning approaches for 
knowledge discovery from the textual content of online software reviews to automatically identify 
relevant capabilities related to IoT analytics solutions.
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