
Guest Editorial Preface

Modern organizations rely on software for their day to day operations, and for their tactical and 
strategic decision-making processes. Enterprise software systems embody that software to support 
organizations’ business processes at any level. Engineering and developing enterprise software 
systems means not only to deal with the stakeholders’ individual requirements, but also to ensure those 
requirements are aligned with the organization’s strategy and its mission. Consequently, enterprise 
software systems are embedded with organizational knowledge, guiding the systems’ behavior 
according to the organization’s expectations, its business rules, its culture, etc.

A software development process consists of a sequence of activities and associated results that 
produces a software product (Sommervile, 2015), enterprise software included. This development 
process typically includes activities of eliciting requirements, modeling and analyzing the problem 
at hand, designing, modeling and prototyping a solution, and developing and testing the solution 
itself. Most of these activities include communicating, both with stakeholders and within the software 
development team. The main support for documenting and communicating systems’ requirements 
and system’s designed features are models. So, these models end up including all or most of the 
organizational knowledge that must be embedded into enterprise software systems.

Software models are at a higher abstraction level than code, and so it is easier for software 
engineers and developers, and stakeholders to reason and communicate about the software system 
by using a software model. These models are typically discarded after fulfilling their role of 
helping reasoning and communicating about the system, and ultimately after the development 
process has ended.

Model-driven development (MDD) is a different method (process and techniques) to software 
development, where models are not only aimed at reasoning and communicating about the system, but, 
together with code, models are productive artefacts. They are as important as code in the production 
of the final system. In fact, much of the code is automatically produced from models. This enables 
the separation of analyzing and designing the system from generating the system code. MDD models 
may include all the organizational knowledge required to produce the system code.

MDD approaches software development by constructing models that may be refined (transformed) 
through different levels of abstraction, from a platform independent level, or a computation independent 
level, to a platform specific model that is directly mapped to final code (Cruz, 2015; Frankel, 2003).

The first models constructed in a MDD process are platform independent models (PIM), meaning 
that they model a system in a platform independent way. A PIM can be defined in a computation and 
platform independent way. A computation independent model (CIM) does not model how to make 

Special Issue on Model-Driven 
Development of Enterprise 
Software Systems
António Miguel Rosado da Cruz, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal

v



or compute things, but only what is expected to be made, whilst a PIM may prescribe computations, 
provided it is made in a platform independent way. A CIM is typically only dependent of domain 
or business concerns, thus being independent of implementation platforms. A CIM describes the 
problem from the point of view of the business or domain environment. It is a model of the relevant 
part of the business to where a software system is going to be built, from the information system’s 
perspective (Frankel, 2003; Warmer et al., 2003).

MDD relies on the definition of model-to-model (M2M) transformation processes that enable 
the transformation of PIMs to other PIMs or to platform specific models (PSMs).

From a PSM, code may be automatically generated by using a model-to-code (M2C) or model-
to-text (M2T) transformation process, that is a code or documentation generation process (Warmer 
et al., 2003). MDD enables the collection of the knowledge acquired by an organization throughout 
its entire lifespan, and its storage in the form of computation or platform independent models. These 
models may be adapted and transformed as new business environments and constraints take place. And, 
at any time, they can be transformed to platform specific models when technological changes occur.

Model-driven development approaches try to solve productivity, portability, interoperability and 
maintenance and documentation problems (Warmer et al., 2003).

For instance, software projects productive activities are typically coding and testing, which 
leads the software team members to spend little time modeling or documenting the system. This 
becomes a problem when new team members need to maintain the software (e.g. fix bugs, enhance 
functionality). MDD tries to solve this problem by transferring the productive activities from coding 
and testing to modeling, and basing the software development process in model-to-model and 
model-to-text transformations. Models, being at a high abstraction level, are easier for newcomers 
to understand, lowering the effort and cost of software maintenance, thush increasing productivity. 
The portability problem has to do with the need to adapt existing systems to new technologies. By 
generating code from models, MDD helps maintaining the value of previous investments, as this 
promotes the separation of organizational knowledge in models, such as business rules, from the 
technical knowledge needed for developing and deploying the system to a given specific platform. 
The interoperability problem, the need to build several interoperating software systems, is tackled 
by enabling models to be component-oriented. By leveraging the notion of component from code to 
models it is possible to model interoperable component systems and code generated from models must 
also be interoperable, maintaining at code-level the interoperability modeled at model-level. Finally, 
the maintenance and documentation problems are mitigated by generating high level documentation 
from models, as low-level documentation is now currently generated from code and comments in code.

Articles in this issue:

1. 	 A Formal Framework for Scalable Component-Based Systems

This article proposes a formal framework for designing and specifying scalable component-based 
systems together with the corresponding development environment and support for executing them. 
The article defines an incremental design methodology that considers components interfaces and their 
corresponding ports as the basic unit of software construction. Interfaces serve to assemble simple 
components to obtain either more complex ones or the entire software architecture. Additionally, 
interfaces supply interactions and synchronization effects on the underlying sub-system. The 
calculation process is also guided by changes on interfaces where the hierarchical structure of the 
underlying component- based system is maintained.

2. 	 A Semantic Approach to Deploying Product-Service Systems

The second article notes that conceptual modeling may be employed for two classes of goals: (1) 
as input for run-time functionality (e.g., code generation) and (2) as support for design-time analysis 

vi



(e.g., in business process management). This has led to a multitude of modeling languages that are 
conceptually redundant. Between these goals, an inherent trade-off manifests, related to selecting the 
most adequate language for each goal. The article advocates the substitution of the selection dilemma 
with an approach where the modeling method is agilely tailored for the semantic variability required 
to cover both run-time and design-time concerns. The semantic space enabled by such a method 
is exposed to model-driven systems as RDF knowledge graphs, whereas the method evolution is 
managed with the Agile Modeling Method Engineering framework. The argumentation is grounded 
in the application area of Product-Service Systems, illustrated by a project-based modeling method.

3. 	 Combining Model Inference and Passive Testing in the Same Framework to Test Industrial Systems

The last article proposes a framework called Autofunk to test production systems by combining 
two approaches: model generation and passive testing. Autofunk combines the notions of expert 
system, formal models and machine learning to infer symbolic models, while preventing over-
generalization, from the large set of events collected from a production system. Afterwards, these 
models are considered to passively test whether another system is conforming to the models. As the 
generated models do not express all the possible behaviors that should happen, the article defines 
conformance with four specialized implementation relations.

António Miguel Rosado da Cruz
Guest Editor
IJISMD

vii



REFERENCES

Cruz, A. M. (2015). Use Case and User Interface Patterns for Data Oriented Applications. In S. Hammoudi, L.F. 
Pires, J. Filipe et al. (Eds.), Model-Driven Engineering and Software Development, 2nd International Conference, 
MODELSWARD 2014, Lisbon, Portugal, CCIS (Vol. 506, pp. 117-133). Springer International Publishing. 
doi:10.1007/978-3-319-25156-1_8

Frankel, D. S. (2003). Model Driven Architecture – Applying MDA to Enterprise Computing. Indianapolis, 
Indiana: Wiley Publishing, Inc.

Sommerville, I. (2015). Software Engineering. Addison-Wesley (10th ed.). Pearson Education.

Warmer, J., Bast, W., Pinkley, D., Herrera, M. and Kleppe, A. (2003). MDA Explained - The Model Driven 
Architecture: Practice and Promise. Addison-Wesley Professional, 2003.

viii

http://dx.doi.org/10.1007/978-3-319-25156-1_8

	Special Issue on Model-Driven Development of Enterprise Software Systems

