
DOI: 10.4018/IJSSOE.315582

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

CODVerif:
A Continuous Verification of Service-
Oriented Architecture Data
Malik Khalfallah, Paris Est Créteil University, France*

Parisa Ghodous, Lyon 1 University, France

ABSTRACT

CODVerif is an approach that aims to verify the data being inserted in a data store continuously.
CODVerif leverages the combination of ontology and workflow technologies in order to define
workflows that are specific to the domain of “monitoring data insertion.” These domain-specific
workflows are constrained on two dimensions: (1) They use a set of workflow elements that are
specific to the “monitoring data insertion” domain. (2) The logic that these workflows support is
predefined by relying on a set of common data insertion scenarios. Nevertheless, CODVerif is flexible
enough to allow users to define continuous data verification workflows with higher complexity logic
thanks to workflow operators that can be applied on the “monitoring data insertion domain”-specific
workflows. To illustrate the applicability of CODVerif, the authors deploy it in a customer relationship
management (CRM) application and show how CODVerif is used to support users to verify the data
they populate in the CRM. They have also evaluated the CODVerif approach.

Keywords
CRM, Data Standards, Naming Conventions, Populating Data Workflows, Salesforce, Service-Oriented
Architecture

INTRODUCTION

Service-oriented architecture applications (SOAs) define a set of services from a service provider.
Service consumers could invoke these services by providing the right inputs to obtain the expected
outputs. For many applications, the input/output data does not need to be defined rigorously (e.g., class
attributes representing informal descriptions). However, for many other applications, it is necessary to
define SOA input/output data very rigorously (e.g., an attribute that aims to capture a URL (Uniform
Resource Location) needs to be well-defined), otherwise, problems would appear at run-time when
the data will be used. The rigor comes from the specificity of the application that the SOA supports.
This application happens for certain cyber-physical systems (CPSs) applications where the input
should uphold a standardized specification strictly, and users cannot deviate from the constraints
defined by that standard when defining inputs for SOA services. A typical example is the STK SOA
data definition standard (Osorio et al., 2006) and its application to CPSs (https://bit.ly/3K0JOJS). In
STK, data must be defined rigorously following the constraints defined by the standard. Otherwise,
the data would create problems at run-time when CPS on-board services are invoked. Moreover,
besides the standard, SOA data might operate the CPS; thus, the data must uphold a certain naming

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

2

convention (Paniagua et al., 2019). Therefore, as a good practice, additional rules might be applied
even though the standard left the door open and did not put constraints on certain data aspects.

Managing the definition of SOA services’ input and output data could be done in a data store
(Fischer et al., 2018). Nevertheless, because of the complexity of this data and the number of constraints
associated with its definition, it could be challenging for users to ensure the coherency of the SOA
data they define. Furthermore, there are two approaches to address the problem of enforcing SOA
data coherency in a data store, namely: (i) a-posteriori SOA data verification approach and (ii)
continuous SOA data verification approach (CODVerif).

In the a-posteriori verification approach, users define their SOA input/output data but check the
data’s coherency at the end of the data definition phase. The advantage of this approach is that users
would not be constrained by a lot of rules related to data coherency when inserting data. Furthermore,
this approach is simple and can even rely on third party software to perform the verification once
the SOA data is deemed ready (For STK standard, third-party software (https://bit.ly/3NyToG0)
can check STK SOA data coherency). Nevertheless, the drawbacks of the a-posteriori verification
approach are two-fold:

•	 Users will figure out the errors when the data definition phase is almost done (van der Aalst &
Pesic, 2006). This means that users could affect the delivery of their data because they would
repeat defining data to resolve the problems raised.

•	 Users would face many errors in many objects in the data store. These problems often need to
be addressed sequentially and manually.

With the CODVerif approach, each time users populate a piece of data, one or many Monitoring
Data Insertion processes or Workflows (MDIWs) are launched. An MDIW checks whether the piece
of information populated is coherent, following the rules imposed by the standard or even by naming
conventions if they would be applicable. If the MDIW detects that a certain object has not been well-
populated in the data store, it will raise the warnings or create actions that will remain pending until
the problems raised are resolved. The advantage of this approach is that users can continuously address
the problems related to data coherency. Furthermore, users will not let the problems accumulate until
the end of the data definition phase.

CODVerif Overview
In this paper, we propose the CODVerif framework to enforce SOA data coherency when this data is
managed in data stores. The general architecture of CODVerif is depicted in Figure 1. In the bottom
part of the CODVerif architecture, we have a data store and a workflow engine. The store for SOA
services data could go from an OpenOffice Calc sheet to an object-oriented or relational database
defining objects and their attributes. The workflow engine could run workflows modeled with business
process management notation (BPMN) (ObjectManagementGroup, 2022) or other notations. Above
these two components, CODVerif provides the capability of defining monitoring data insertion
workflows (MDIWs). These workflow models are specific to the “monitoring data insertion” domain.
Furthermore, these workflow models use specific elements defined in an ontology (Yu, 2014). We
call this domain-specific ontology Monitoring Data Insertion Workflow ontology (MDIWO, which is
available here https://bit.ly/3JXDaDU). MDIWs models capture the specific activities and events that
must be considered ensuring that we satisfy the rules imposed by the target data definition standard
or the rules imposed by an adopted naming convention for populating data in the data store.

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

3

With the configuration of CODVerif that we described until now, users will probably be
overwhelmed if we let them define MDIWs that aim to verify their SOA data. Knowing that defining
workflow models can be challenging (Dumas et al., 2013) and as we are targeting a specific domain,
that is “monitoring data insertion” domain, CODVerif addresses this challenge by developing a set
of generic monitoring data insertion workflows (GMDIWs). In summary, CODVerif architecture
defines GMDIWs by relying on MDIWO to enforce data coherency rules imposed by SOA standards
and the potential naming conventions.

The CODVerif architecture described until now and depicted in the bottom part of Figure 1 is
abstract. Nevertheless, CODVerif users can use this abstract layer to create an instance of the CODVerif
architecture for a specific use-case of the “monitoring data insertion” domain. Examples of use
cases could be the verification of STK data in a data store or customer data definition in customer
management systems (CRM) (Shaalan, 2020).

If we consider CRM data as depicted in the top part of Figure 1, the instantiation of the CODVerif
architecture for this specific use-case consists in using the set of GMDIWs to attach to relevant objects
or attributes in the CRM data store one or multiple instances of GMDIWs (hereafter, workflow
instances). Each workflow instance aims to enforce a certain data coherency rule imposed by the
standard or the naming convention.

Running Example
We have initially prepared the study in this paper to address STK standard data for CPSs SOA-based
applications. However, this standard is related to CPS and needs a complex background before
elaborating on an easy-to-follow example. Thus, to illustrate our CODVerif approach, we will apply it
to the definition of customers’ data in a CRM called Salesforce (www.salesforce.com). This use case
is relevant because the definition of CRM data is often constrained by complex naming conventions
(Acker et al., 2011). The same approach could be applied to STK-based data and other SOA data
standards.

This paper is organized as follows. Next, we propose the conceptual framework that supports the
CODVerif architecture of Figure 1. In this section, we detail the different components of CODVerif by
providing their formal definitions and by proving some important properties of CODVerif. Then, we
identify the different generic monitoring data insertion scenarios we have identified. We will detail
the important aspects of the scenarios that have been identified. This work describes the CODVerif
prototype and its deployment in a specific use case that comprises monitoring the insertion of (SOA)
data in a CRM system. This use case is also used to evaluate CODVerif by involving CRM experts.
Finally, we present the related work and then conclude the paper.

Figure 1. General architecture of CODVerif

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

4

CODVERIF CONCEPTUAL FRAMEWORK

CODVerif Specific Workflow Domain
Different studies have been conducted to extend workflow modeling to make it domain-specific.
For example, Yousfi et al. (2016) extended BPMN to make it specific to the Internet of Things (IoT)
domain. Besides BPMN core elements, such extensions add their constructs. Users will have the
possibility to use the core elements of BPMN and the extension elements. CODVerif aims to make
workflow modeling specific to the “monitoring of data insertion” domain by introducing constraints
in the two following dimensions:

•	 Constrain the elements that can be used in workflow models by defining a domain ontology
(MDIWO) specific to the “monitoring of data insertion” domain,

•	 Constrain the logic that workflow models accept by defining generic monitoring data insertion
scenarios.

With these two constraints, we propose the following workflow operations to instantiate and
extend CODVerif:

•	 Combine the monitoring data insertion scenarios (GMDIW) with the domain ontology (MDIWO)
via the instantiation operation to create concrete monitoring data insertion workflows,

•	 Automated creation of MDIW that aims to keep the data store content coherent even after the
removal of data (the inverse of populating data) via the negation operation,

•	 Create complex MDIWs via the composition operation.

We depict the cODVerif core elements cited above in Figure 2. In the next subsequent sections,
we elaborate on these CODVerif core elements.

Monitoring Data Insertion Workflow Ontology (MDIWO)
The ontology helps us narrow the scope of workflow models we are targeting and thus simplifies the
development of operations on these models. Indeed, as mentioned previously, in this paper, we are
only focusing on workflows that aim to guide users in inserting data in data stores. Accordingly, we
build an ontology that defines workflow core concepts related to “monitoring data insertion” domain.
In this domain, we focus on populating attributes and references that objects in a data store could
have. Figure 3 depicts the different pieces of information that need to be populated for a generic class
in a unified modeling language (UML) model.

Figure 2. CODVerif Core Elements

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

5

The ontology MDIWO leverages message events related to populating data in a data store.
MDIWO captures the definition, removing the update message events of references and attributes
with their different types, as depicted in Figure 3. MDIWO leverages populating data activities that
act on references and attributes with their different types. Furthermore, MDIWO defines disjoint
relationships between concepts to facilitate identifying a concept and its inverse. A typical example
of a disjoint relationship between two message events is reference_defined_Receive_MESSAGE and
reference_cleared_Receive_MESSAGE, which are opposites.

MDIWO supports CODVerif in specifying workflow models related to different scenarios
related to populating data. Furthermore, MDIWO aims to support the automated generation of
workflow models that undo what populating data workflows did. Finally, MDIWO aims to support
the instantiation of monitoring data insertion workflows for specific use cases. Thus, MDIWO defines
four concepts:

Concepts Related to Activities that Populate or Clear Attributes and References
Populating data activities could concern:

•	 Creating references between objects,
•	 Populating mandatory attributes,
•	 Defining or reviewing the functions that calculate deduced attributes,
•	 Populating patterned attributes,
•	 Populating rationale-based attributes,
•	 The inverse of the above activities when applicable.

Concepts Related to Exceptions of Unfound Objects for
References and Values Rejected for Attributes
When populating data, exceptional situations could occur. Exceptions that could occur concern
objects that users look for but would not find when creating references between objects. Furthermore,
exceptions could concern values that are rejected when populating attributes. In MDIWO, exceptions
do not have opposite classes.

Concepts Related to Event Messages Which are Triggered When Data is Updated
Although workflow message events are used to establish communication between pools in BPMN
(Dumas et al., 2013), in this paper, we use message events to create modular and decoupled workflow
fragments. Workflow fragments could be combined to support complex scenarios of populating data
in a data store. Furthermore, message events can notify users about actions to be performed before the
populating data phase ends. Thus, MDIWO creates a hierarchy of send and receive message events
to support different scenarios of populating data. The hierarchy of all send/receive messages related
to populating data in a data store are defined in MDIWO.

Figure 3. Types of attributes and references covered by the MDPWO

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

6

Concepts Related to Conditions Associated with Workflow Flows
Conditions could be associated with flows when defining XOR and OR gateways. Therefore, MDIWO
defines a hierarchy of concepts to capture conditions related to populating data in a data store and
their inverse.

Every ontology can define concepts and individuals (Yu, 2014). Individuals are realizations of
the concepts for a specific use case (e.g., populating data for a CRM or populating data for STK). At
this stage, we do not need to define any individual in MDIWO because individuals will be specific
to the use case to be addressed.

Operations on MDIW
MDIWO allows us to model MDIWs to address the common scenarios of populating data. Successfully
defining operations on MDIWs will allow us to address more complex scenarios and specific use
cases in the “monitoring of data insertion” domain. The next sections will detail three operations of
MDIWs. These operations are:

•	 Instantiation of MDIWs to address specific use cases (e.g., STK-related monitoring data insertion
workflows, CRM-related monitoring data insertion workflows).

•	 Negation (Ø) of MDIWs to handle the scenarios of undoing what will be done by GMDIWs.
•	 Composition (П) of MDIWs to attach multiple data monitoring workflows to a single object

or attribute.

Instantiation of MDIW
It is important to differentiate between the instantiation of an MDIW and the creation of a case (van
der Aalst, 2005) of an MDIW. The instantiation of MDIWs consists in starting from an MDIW
modeled with the concepts of the MDIWO. Then, we replace each concept in the MDIW model
with the individual from the MDIWO to address a specific scenario of populating data for the use
case being addressed.

According to the observation above, the instantiation starts by defining individuals in the MDIWO.
The result would be MDIWO C I

use case user case− −= ∪ . Once the MDIWO
use case- has been defined,

users can create as many instances of monitoring populating data workflows as necessary to handle
the rules related to their use case.

Definition: Workflow instance
A workflow instance is derived from a GMDIW where we replace each element used by the GMDIW
and defined in MDIWO.C by the appropriate individual coming from MDIWO I

use case- . . The replace
action is denoted as |. Notice that a workflow instance is different from a workflow case (Dumas et
al., 2013) because a workflow instance could lead to creating multiple workflow cases.

Lemma
Applying the instantiation operation to a well-formed MDIW modeled with BPMN generates a
well-defined workflow instance MDIW

use case- .

Proof
Using the formal notation of BPMN models defined by Ye et al. (2008), where O is the set of all
elements in BPMN and  S is the set of all start events, we prove by contradiction that if GMDIW is
well-formed and has the instance MDIW GMDIW

o MDIWO o oindividual
= ∈ ∈�|�

 then MDIW is well-formed.
To be well-formed, MDIW has to satisfy all conditions for well-formed BPMN processes. We show

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

7

that MDIW will satisfy the first condition of well-formed BPMN models. The same approach can
be used to prove the other properties defined in Yousfi et al. (2016).

•	 ∀ ∈ ∪ () = ∧ =s dom Exc s sS , • •�� Æ 1

Assume that ∃ ∈ ≠ ∨ ≠s s s s
individual individual individual

: • •�
�

Æ 1 . This s
individual

 cannot exist because
any s

individual
 always has the same properties as its class s and thus s

individual
 has several predecessors

and successors equivalent to those of its class s .
Thanks to this lemma, CODVerif ensures that if users start from a well-formed GMDIW and

instantiate it, they will always obtain a well-formed workflow instance.

Negation of MDIW
MDIWs are defined to ensure that populating data leads to coherent data in the store. As it is necessary
to consider data coherency rules when populating data, it is also necessary to consider them when
removing data. The objective is to keep data coherent in the data store even though some data entries
are removed. Instead of redefining MDIWs specific to the data removal scenarios, we propose defining
the negation operation on MDIWs. With the negation operation, if users define a MDIW, then they will
be able to generate automatically the inverse of that MDIW. The inverse of a MDIW aims to ensure
that the global data coherency in the data store is maintained after the removal of certain pieces of
data. The definition of the negation operation is possible thanks to our ontology-based approach that
limits the scope of MDIWs. If we had not limited the scope, then it would have been too complex to
define the negation operation.

The negation operation on a MDIW model is applied sequentially to elements constituting the
workflow from the start events until the end events. The result of each step of the negation operation
depends on two aspects:

•	 The element encountered and its definition in the MDIWO,
•	 The context in which the concept is encountered is being used in the MDIW model.

MDIWO already captures the negation of certain concepts via the disjoint relationship.
Nevertheless, this is insufficient, as the negation of certain MDIWO concepts could also affect their
successor in MDIW. To comprehensively define the negation operation on MDIW, Table 1 summarizes
the rules driving the negation operation. To formally capture the negation operation rules, we rely
on the formal representation of workflows defined by Ye et al. (2008).

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

8

Table 1. Results of the negation operation on MDIW elements

 Negation of MDIW constructs Description

∀ ∈ ¬() = ¬()a O a a, • •� The successor of the negation of an object a
is the negation of the successor of the object
a

¬ ()





 = ¬() ¬()()XOR a a XOR a a

c c c c1 2 2 1
1 2 1 2

, ,
The negation of an XOR-split gateway is
an XOR-split gateway with output flows
switched. Notice that following the GMDIW
presented, the XOR gateways always have
only two output flows. This is one benefit
of CODVerif where the domain scope is
predefined.

∀ ∈ ¬ = → ¬() =a O a a a a, • •� �
If there is no impact of the negation operation
on an element O of an MDIW, then the
successor of that element remains unchanged.

¬ −() = −AND JOIN OR JOIN
The negation of a parallel-join gateway is
equal to an OR-join gateway.

¬ −() = −AND SPLIT AND SPLIT
There is no impact of the negation on the
parallel-split gateway.

∀ … ∈ ¬ − …()() = − ¬ ¬ …¬()a a a O OR JOIN a a a OR JOIN a a a
n n n1 2 1 2 1 2

, , : , , , ,� The negation of an OR-JOIN is the OR-JOIN
of the negation of its predecessors.

∀ ∈ − () =a O OR JOIN a a:
The OR-JOIN with one single predecessor is
constituted of that predecessor only.

Clear_non-mandatory_attribute_ACTIVITY•= non-mandatory_
attribute_cleared_Send_MESSAGE

The successor of any individual whose class
is clear_non-mandatory_attribute_ACTIVITY
ÎMDIWO is an individual of the class
non-mandatory_attribute_cleared_Send_
MESSAGE

∀ ∈ ¬ = → ¬ =a a a , •Æ Æ If the negation of a message event in a MDIW
is not defined, then all successors are not
defined in Ø MDIW .

Mandatory_attribute_to_be_cleared_Receive_MESSAGE•=
mandatory_attribute_to_be_populated_Send_MESSAGE

The successor of any individual whose class
is mandatory_attribute_to_be_cleared_
Receive_MESSAGE ÎMDIWO is an
individual of the class mandatory_attribute_
to_be_populated_Send_MESSAGE

populate_patterned_attribute_ACTIVITYÎ patterned_attribute_to_
be_populated_Receive_MESSAGE•® patterned_attribute_to_be_
cleared_Receive_MESSAGE•= clear_patterned_attribute_ACTIVITY

The negation of an activity that populates
patterned attributes is an activity that clears
that patterned attribute.

Clear_patterned_attribute_ACTIVITY•= patterned_attribute_cleared_
Send_MESSAGE

The successor of any individual whose class
is clear_patterned_attribute_ACTIVITY
ÎMDIW is an individual of the class
patterned_attribute_cleared_Send_MESSAGE

Table 1 continued on next page

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

9

Composition of MDIW
It is possible to associate an object in a data store with multiple MDIWs to check multiple coherency
rules for that particular object. Hence, we need to define the composition of different MDIWs. Indeed,
the composition of MDIWs consists of applying multiple MDIW on the same attribute that will be
populated. The composition of MDIWs is a first-order logic formula involving different MDIWs.
The composition operator of MDIWs should satisfy the following requirements:

1. 	 It should be possible to compose an MDIW and its negation ØMDIW ,
2. 	 It should be possible to apply the negation on a composite MDIW Composite MDIW- , and

the resultant ¬ −Composite MDIW should be applicable.

To compose MDIWs, we rely on first-order logic operators because CODVerif aims to enforce
multiple coherency rules simultaneously. Hence, as far as logic operators are concerned, the logic
operator that satisfies a couple of requirements above is the implication ® operator. Indeed:

1. 	 If MDIW → ¬MDIW : this means if MDIW terminates successfully, then its negation can be
triggered if the undo of MDIW occurs.

2. 	 If Composite MDIW MDIW MDIW MDIW
n

− = → →…
1 2

 then
¬ − = ¬ →…→ ¬Composite MDIW MDIW MDIW

n 1
: this means that negating a

composite MDIW, leads to ensuring that clearing the attribute value maintains the data
coherent.

To compose MDIWs, the “Or” logic operator Ú and “he” “And” logic operator Ù are“not”adapted.
For Ú , the reason is obvious because CODVerif aims to impose multiple coherency rules on the
same object and not a subset of coherency rules. For Ù operator, the reason is that we cannot compose
an MDIW and its inverse ØMDPW via the Ù logic operator. In this case, we would have

 Negation of MDIW constructs Description

composite_object_to_be_removed_Receive_MESSAGE•= remove_
composite_object_ACTIVITY

The successor of any individual whose class
is composite_object_to_be_removed_
Receive_MESSAGE ÎMDIWO is an
individual of the class remove_composite_
object_ACTIVITY

remove_composite_object_ACTIVITY•= composite_object_removed_
Send_MESSAGE

The successor of any individual whose class
is remove_composite_object_ACTIVITY
 ÎMDIWO is an individual of the class
composite_object_removed_Send_MESSAGE

clear_rationale-based_attribute_ACTIVITY•= rationale-based_
attribute_cleared_Send_MESSAGE

The successor of any individual whose class
is clear_rationale-based_attribute_ACTIVITY
 ÎMDIWO is an individual of the class
rationale-based_attribute_cleared_Send_
MESSAGE

Table 1 continued

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

10

MDIW MDIW null∧¬ = . Moreover, the negation of a composition leads to a disjunction of
MDIWs (Ú

i
MDPWs) which is not applicable as already clarified for the Ú operator.

Notice that DecSerflow (van der Aalst & Pesic, 2006) proposes to compose workflows using
temporal logic operators. Nevertheless, CODVerif does not aim -at least- for the moment to address
time-related coherency rules.

Proposition

Applying the composition operation to well-defined MDIW
i
 modeled with BPMN generates a

well-defined workflow П�MDIW
i
modeled with BPMN.

Proof
The proof is by contraction: a composition of well-formed MDIWs is:
C MDIW MDIW MDIW MDIW

n
− = → →…

1 2�
. Suppose that this composition C MDIW-

is not well formed. This means that one of the component workflows MDIW
i
 is not well formed.

More specifically,
not well formed MDIW not well formed MDIW not well fo− − ()∨ − − ()…∨ − −

1 2
rrmed MDIW

n().
Nevertheless, we said initially that our composition involves well-formed MDIWs, which leads to
a contradiction.

GENERIC MONITORING DATA INSERTION WORKFLOWS (GMDIW)

Different scenarios exist for populating data in a data store. It is necessary to identify these scenarios
to develop the appropriate GMDIWs that will monitor and guide users when populating data.

To develop the scenarios of populating data, we have relied on two inputs:

1. 	 The experience gained when populating data for different purposes while considering naming
conventions,

2. 	 The study of the data coherency rules is defined by different SOA standards, including STK.

We have identified 8 GMDIWs related to data insertion. These GMDIWs do not aim to define
a comprehensive list of data insertion scenarios, but we believe they offer important insights. In Table
2, we present the rationale behind each GMDIW along with its negation ØGMDIW which can be
calculated automatically thanks to the negation operation defined above.

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

11

Table 2. List of Generic Monitoring Data Insertion Workflows (GMDIW)

GMDIW
Label

GMDIW Description ØGMDIW

Scenario 1:
Populating
relationships
between
objects

When users create a new object in the data store, this GMDIW aims to
guide users to ensure that this new object will be linked to another object
because of the mandatory association between both objects. The object to
be referenced might exist or not, and this scenario addresses both cases.

aims to guide
users to undo
the relationships
cleanly.

Scenario 2:
Populating
values of
deduced
attributes

In the data store, the value of certain attributes (dependent attributes)
could be a function of the values of other attributes (independent
attributes). This GMDIW aims to guide users to ensure that whenever
dependent attributes are populated when the independent attributes
have been populated. As the generated values of the dependent attributes
could be rejected, it is necessary to raise tasks to guide users to update the
independent attributes.

aims to guide
users to update
the dependent
attributes
when their
corresponding
independent
attributes will be
updated.

Scenario 3:
Populating
values of non-
mandatory
attributes

In a data store, the value of certain attributes might be optional. However,
if a value is defined for those attributes, they might need to be unique. This
GMDIW aims to guide users to ensure that whenever a value is assigned to
such attributes, it will be required to ensure that it is unique.

is triggered when
the attribute value
is cleared, and it
raises a message
event to show this.

Scenario 4:
Populating
values of
mandatory
attributes

In a data store, the value of certain attributes might be mandatory but
also it might need to satisfy certain conditions. This GMDIW aims to
guide users to ensure that values assigned to such attributes are unique
and that the values assigned to uphold the constraints defined if they exist.

is triggered
whenever a value
of a mandatory
attribute is cleared,
warning users
it needs to be
populated.

Table 2 continued on next page

1
Ø scenario MDIW

2
Ø scenario MDIW

3
Ø scenario MDIW

4
Ø scenario MDIW

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

12

GMDIW
Label

GMDIW Description ØGMDIW

Scenario 5:
Populating
values of
patterned
attributes

In a data store, values assigned to two or more attributes might need to
have relationships with each other. The list of relationships that we
consider is the following:

Attribute a ’’ value in object x
1

 has to be inline with attribute a ’s value

in all other objects xi in the data store (objects of the same type),

Attribute a ’s value in object x
1

 has to be different from attribute b ’s

value’in all other objects xi in the data store (objects of the same type),

Attribute a ’s value in’object x
1

 has to be inline with attribute a ’s value

in a’l other objects yi in the data store (objects of different types),

Attribute a ’s value in obje’t x
1

 has to be different from attribute b ’s

value in all ot’er objects yi in the data store (objects of different types).
The inline and different are abstract relationships. The corresponding
checking activities are defined in MDIWO and can be instantiated to
capture concrete use-case relationships. This GMDIW aims to guide users
to ensure that we build the values assigned to certain attributes following
the above relationships, if one or more are applicable.

 is triggered when a
patterned attribute
is requested to be
cleared.

Scenario 6:
Populating
aggregation
relationships

It is possible to create a global object in a data store that aggregates a
certain number of components. Nevertheless, when adding an aggregate
object, it could be necessary to add objects referenced by this component
to the same global object.

 is triggered when
the aggregate
object is removed
and ensures that
the inner objects
are removed.

Scenario 7:
Populating
composition
relationships

In a data store, populating hierarchical objects could be performed
differently. In fact, there is no “correct” manner to be followed but to
maintain the coherency of data; it is necessary to follow the same steps for
all hierarchical objects of the same type. As far as hierarchical objects are
concerned, two approaches could be used:
A raw approach to capture the hierarchy of objects.
A structured approach to capture the hierarchy of objects
Both approaches capture the same information, but one must populate the
data store to keep the content of similar objects coherent.

comprises a
workflow that
appropriately
removes the
link between the
composite objects
and components.

Scenario 8:
Populating
values of
rationale-
based
attributes

In a data store, values of certain attributes might accept different inputs,
and all of them might be correct. Nevertheless, the inputs might need a
certain rationale that might have been already by the same attributes in
other objects. is triggered when

a patterned
rationale-based
attribute is
requested to be
cleared.

Table 2 continued

5
Ø scenario MDIW

6
Ø scenario MDIW

7
Ø scenario MDIW

8
Ø scenario MDIW

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

13

Lemma
Applying the negation operation to a well-defined GMDIW modeled with BPMN generates a well-
defined workflow ØGMDIW modeled with BPMN.

Proof
The proof can be presented by exhaustion through applying the negation operation on each GMDIW
in Table 2 and showing that the result is a well-formed BPMN model.

CODVERIF PROTOTYPE

We have developed a three-profile liferay-based portal (Yuan, 2012) to implement the CODVerif
framework, as illustrated in Figure 4. The first profile is the CODVerif-Admin (top part of Figure 4).
Users having this profile aim to perform the following activities required for CODVerif:

•	 Define and extend the CODVerif ontology (MDIWO).
•	 Define the data model corresponding to a specific domain whose data needs to be verified (e.g.,

CRM or STK).
•	 Define generic monitoring data insertion workflows (GMDIW).

The second profile is called CODVerif-Specialist (bottom part of Figure 4). Users having this
profile aim to perform the following activities:

1. 	 Select the object, the attribute, or the reference to be monitored from the target data model.
2. 	 Associate the selected attribute, reference, or object in the data model with one or multiple

GMDIW scenarios to enforce data coherency rules or the imposed naming conventions.
3. 	 Generate the individuals in the MDIWO ontology.
4. 	 Determine whether generating the negations and the composition of the selected scenarios is

necessary.
5. 	 Generate MDIW instances and deploy them.

The third profile of CODVerif is users populating data stores that are guided by CODVerif
MDIW instances.

Figure 4. CODVerif liferay-based portal with the two profiles interfaces

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

14

CODVerif-Admin profile uses a portlet that accesses Web-Protégé (Tudorache et al., 2008) to
model the ontology. Additionally, they use Bizagi (Bizagi, 2022) via a portlet to model the different
GMDIW, presented earlier, using BPMN (ObjectManagementGroup, 2022). In practice, Table 3
provides one demonstration per scenario to illustrate how MDIW instances deployed in Salesforce
CRM help users identify errors in Salesforce data when populating data.

CODVERIF EVALUATION

Evaluation Design
To evaluate CODVerif, we have defined three levels of naming convention rules:

•	 Simple: users can implement naming convention rules easily. For example, a rule could be not
to include white spaces in phone number attributes in the CRM.

•	 Medium: an example of such a CRM rule is that each account name should have a score as a
suffix representing the importance of that account.

•	 Complex: knowing that in a CRM an account could have multiple contacts (Shaalan, 2020),
contact names might need to be attached to a suffix number that could identify two important
pieces of information which are internal to the company using the CRM:
◦◦ The identifier of the role played by the contact from the account point of view,
◦◦ The account number to which the contact belongs.

For example if we assume that we have 9 accounts in our CRM and each account could have at
most 16 contacts playing different roles for that account, then a contact whose name ends with the
suffix 105 will bring the two following pieces of information:

•	 ID of the role of the contact in the account = (105 1 16+()mod = 10

•	 ID of the account to which the contact belongs = Int 1105 1000 16 1−()()+/ = 7

Thus, a complex rule is that contacts shall end with a number capturing the two pieces of
information above.

Table 3. Illustrations of MDIWs with salesforce where the description of each example is attached to the demonstration

Scenario MDIWSalesforcesci
 short demo

Scenario 1: Populating relationships between objects https://bit.ly/3Nyii8D

Scenario 2: Populating values of deduced attributes https://bit.ly/3qRLQEl

Scenario 3: Populating values of non-mandatory
attributes

https://bit.ly/3Lv3PIy

Scenario 5: Populating values of patterned attributes https://bit.ly/3qRLLk1

Scenario 6: Populating aggregation relationships https://bit.ly/3iT3rHy

Scenario 8: Populating values of rationale-based
attributes

https://bit.ly/3JPn5Ad

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

15

The hypothesis that is evaluated is that it is beneficial for CRM users and users who populate
general data to be guided to uphold the naming convention rules and produce high-quality data.
For this reason, we need some criteria that will reflect this issue. The criteria that will be used for
evaluating CODVerif should examine whether we address the aforementioned challenges. Therefore,
we define three criteria for the qualitative challenges addressed by CODVerif and one criterion for
the relevance of the CODVerif approach. We have four metrics (M1, M2, M3, and M4).

•	 M1: the number of simple rules that have been upheld.
•	 M2: the number of medium complexity rules that have been upheld.
•	 M3: the number of complex rules that have been upheld.
•	 M4: the V-Aiken provided by involved users regarding the questionnaire.

Evaluation Case
Our test sample comprises three groups of university master students who have joined a CRM course
and who are to accomplish different exercises on various CRM features. The exercises required
populating data in the CRM. To avoid introducing any bias when evaluating CODVerif, we have
put no focus on following the naming convention. The subject was presented normally. The CRM
exercises assigned to the students have avoided batch data insertion. We believe it is easier for users
to follow the naming convention rules when they populate data in batch mode. The three groups,
which do not know each other, were split into:

•	 The first group populated CRM data while they were asked to follow the naming convention
in the exercise. However, CODVerfi workflow instances were not deployed. Therefore, we call
this group Group 1.

•	 The second group of students, following another lecture about business process management,
generated workflow instances using CODVerif prototype and deployed them into Salesforce to
enforce the provided naming convention. We have assigned the generation of CODVerif workflow
instances to this group to keep the two other groups unaware of the existence of these workflow
instances. We call this group Group 2.

•	 The third group used Salesforce, and the deployed workflow instances to accomplish data insertion
exercises. We call this group Group 3.

Evaluation Results
Group 1 and Group 3 are composed of 15 master’s students. Based on the analysis of the results that
these students have provided, the evaluation metrics defined earlier were calculated and presented
in Table 4.

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

16

We assessed the statistical significance of our findings with hypothesis testing (Shi & Tao, 2009).
Knowing that hypothesis testing aims to test the viability of the null hypothesis in the light of
experimental data. In our case, all three hypotheses that were tested concern the parameters M1, M2,
M3 detailed in Table 4, which are proportions. For this reason, a two-sample Z-test of proportion
(Zou et al., 2003) was used to decide whether the null hypothesis should be rejected for a significance
level. The p -value of the test has a central role in the decision regarding the rejection of the null
hypothesis. A p -value is a measure of how much evidence we have against the null hypothesis (the
smaller the p-value, the more evidence we have against it). In the following, for each finding, we also
report the test results regarding its significance.

A first finding regarding simple naming convention rules (M1) are upheld easily by both Group
1 and Group 3, even though Group 3 performs better than Group 1. This finding could be explained
by the pending notifications that oblige users to take the appropriate actions to eliminate them. The
null hypothesis (H0) in this case assumes that M1_Group1 £ M1_Group3, while the alternative
hypothesis (H1) is that M1_Group1 >M1_Group3. The results of the two-sample Z-test of proportion
for metric M1 are depicted in the first column of Table 5. As seen in Table 5, the null hypothesis
should be rejected (p -value < 0.01), and thus the alternative H1 is true. In other words, the observed
difference between the two groups regarding the percentage of simple naming convention rules that
have been upheld is statistically significant at the 0.01 level.

Table 4. Evaluation of the implementation of the naming convention rules by Group 1 and Group 3

The proportion of the total number
of rules not satisfied for Group 1 (no

CODverif)

The proportion of the total number
of rules not satisfied for Group 3

(with CODVerif)

M1: simple naming convention
and data integrity rules

16.4% 4.9%

M2:Medium complexity
naming convention and data
integrity rules

45.1% 15.3%

M3:Complex naming
convention and data integrity
rules

60% 16.1%

Table 5. Z-tests for the three hypotheses

Z-test M1 M2 M3

Level of significance 0.01 0.01 0.01

Group 1

Number of rules not considered 47 88 63

Sample size 285 195 105

Group 3

Number of rules not considered 14 30 17

Sample size 285 195 105

Intermediate calculation
Table 5 continued on next page

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

17

The interpretation of this finding is as follows: for Group 1, students have not deemed it important
to follow every simple naming convention rule, while Group 3 students were driven by the CODVerif
workflow instances, which allowed them to uphold more rules compared to their matching pairs in
Group 1.

For M3, the same conclusion as M1 can be drawn, but here we see that the proportion of naming
convention rules that were not upheld by Group 1 is higher. Interpreting this is that complex rules are
more difficult to implement. Nonetheless, the proportion of students who relied on CODVerif and did
not uphold certain naming convention rules has also increased. Despite students observing CODVerif
notifications pending regarding the naming of their data, they lacked time to complete the exercise.

CODVerif Utilization Evaluation
We have implemented a procedure to assess the usefulness of our CODVerif approach for data. To
do so, we count on nine master’s students in the CRM discipline (Group 2). These students have
experience in defining CRM data for different purposes. Among these purposes is the export of CRM
data for SOA-based applications. Additionally, these students have experience defining Salesforce
workflows to automate tasks (Keel, 2016).

Over four weeks, we organized weekly sessions with the students of Group 2 to evaluate the
CODVerif approach. First, we provided the students with information about our CODVerif approach,
its goals, and the problem it aims to address. After that, we presented the generic scenarios described
in Section 3 to the students so that they could assess their relevance. Next, we asked the students
to implement the scenarios described and populated the CRM with customers’ data to evaluate the
relevance of CODVerif. When they had finished the definition of the different scenarios and the
assessment of the errors left, we asked them to answer a series of questions (denoted A1–A7 in Table
6) about the validity and applicability of CODVerif and the results obtained in relation with their
customers’ data. Finally, the students of Group 2 were required to assess each element with a value
in the set {0, 1, 2, 3, and 4} where 4 represents the most positive possible feedback.

Z-test M1 M2 M3

Level of significance 0.01 0.01 0.01

Group 1 proportion 0.164 0.451 0.6

Group 3 proportion 0.049 0.153 0.161

Difference between two proportions 0.115 0.298 0.438

Z-test statistic 4.47 6.39 6.53

p -Value p < 0 00001. p < 0 00001. p < 0 00001.

Null hypothesis (reject/not reject) Reject H0 Reject H0 Reject H0

Table 5 continued

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

18

To summarize the global value given by the Group 2 students for each assessed element, we
used the V-Aiken statistic, a commonly used approach to summarize research relevance ratings
obtained from experts (Lara et al., 2020). The following equation defines the formula used to calculate
this statistic: V S n c

i i
= −()∑ / ,1 where S

i
 represents the sum of the values a student provides

to each assessed element, n is the number of students (9 in this case), and c is the number or
categories to rate (5 in this case).

Figure 5. Group 2 evaluation V-Aiken plot

Table 6. Group 2 evaluation with V-Aiken

Element to assess Average of the nine students
assessment score

V-Aiken
(M4)

A1. How far do you consider the problem populating data for SOA
addressed in this paper worth researching?

4 1

A2. How far do you consider the usefulness of replacing a fine-
grained naming convention with a set of instances of GMDIWs to
ensure the coherency of data populated?

3.88 0.97

A3. How far do you consider the usefulness of performing the
checking during the populating phase rather than after exporting
the data?

3.77 0.94

A4. How far do you consider the complementarity between third-
party verification software and the instances GMDPWs?

2.77 0.69

A5. How far do you consider the decrease of non-conformity errors
raised during the usage of the data delivered?

3.11 0.77

A6. How far do you consider the simplicity of exchanging
verification rules captured in the form of MDPW between partners
in the extended enterprise (Figl et al., 2018)?

2.44 0.61

A7. How far do you consider the comprehensiveness of the set of
GMDIWs that have been identified?

3 0.75

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

19

Figure 5 summarizes all these statistical findings graphically. Knowing that the statistical
significance limit is 0.7 (obtained in the V-Aiken right-tail probability table (Lara et al., 2020) and
considering the results obtained (Table 6), we can make the following conclusions:

•	 According to Group 2 students, the problem addressed in this paper is worth researching; the
method is appropriate, and the research questions are well-defined (all V-Aiken values are above
the threshold of 0.7)

•	 The V-Aiken of A4 and A6 are below the threshold of 0.7. For A4, we can explain the score
because third-party verification software performs more checks that could go beyond the standard
and the naming convention rules. For A6, the score can be explained by the concentration of
experts on their data, and they have not seen the usefulness of exchanging verification rules with
other partners. Furthermore, each partner probably has their naming convention, and thus there
is no need to exchange MDIW.

RELATED WORK

A data store that aims to define data for SOA applications (Hobsch & Schmidhuber, 2022) has
been discussed in the literature (Eisenmann et al., 2015). However, this data store does not perform
continuous verification of data. Instead, it highlights the attributes that contain an error for simple
verification rules. Therefore, users can rely on the consistency check for complex verification rules
to identify potential errors. However, with the large number of objects that could be managed in this
kind of data store (hundreds of thousands of objects (Kazmirchuk, 2017)), the consistency check
report could quickly become difficult to analyze and use.

The problem of defining data that upholds data coherency rules imposed by standards, naming
conventions, or both is not limited to SOA applications, but has a larger scope. Wang et al. (2012)
addressed the problem of defining data that upholds a naming convention for vehicular communication.
They have shown the necessity of having coherent data with a naming convention. The observation
made by Wang et al. (2012) is valid, but they have not provided a solution on how to impose this
naming convention when populating the data store that contains the data of their vehicles. Paniagua
et al. (2019) aimed to show how to use a naming convention to build a system of systems structure
that relies on SOA. They defined the relevant characteristics of a naming convention: (i) Descriptive,
(ii) Structured, (iii) Topology Informative, (iv) Security reinforce, (v) Useful for discovery, (vi)
Unambiguous, (vii) Versatile. and (viii) Meaningful. The authors have clearly shown the difficulty of
enforcing the definition of data that satisfies all the characteristics imposed by a naming convention.
Paniagua et al. (2019) also addressed the naming of services in an SOA but not the naming of inputs
and outputs of services in an SOA. Harding and Bayliss (2022) linked drug databases and naming
convention policies to enforce interoperability between vendors, physicians, and pharmacists. Baijens
et al. (2020) showed the importance of naming conventions for analyzing clinical trial data, which are
managed in big data platforms. They noticed that equivalent concepts were named differently, which
complexified the clinical trial data analysis. First, this shows the importance of upholding the naming
convention rules when populating data stores. Second, this also shows the limits of the a-posteriori
data verification, which led to complexified data analysis models.

Examples of naming conventions we can cite are Dhavle and Rupp (205) and Dumas et al. (2013).
All cited works above define the rules on how data must be named. However, these rules are defined
in a separate document from the data themselves. Except if manual checking or a-posteriori checking
is performed, no automated mechanism guides or warns users who populate the data store to uphold
the rules imposed by the naming convention.

Leopold et al. (2013) developed a technique to detect violations of naming convention rules when
defining business processes. Authors have relied on natural language processing (NLP) techniques
to check the names used when different languages can be applied. Although this contribution is

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

20

automated, it belongs to the category of a-posteriori verification approaches because data populated
in the data store can be checked when the data definition phase ends.

We have also illustrated the importance of having a data store with data upholding the standard’s
rules or the naming convention in Alshreef et al. (2017). In this paper, the authors have defined
access rights based on the name given to the data. They called their framework NC-RBAC (Naming
Convention RBAC). The study developed in Alshreef et al. (2017) illustrates the importance of having
data that uphold the naming convention and the standard rules. Besides the ambiguity and the wrong
usage that can be made with data named wrongly, the access control based on the naming convention
better motivates the CODVerif approach to impose the naming convention. In the same cyber security
domain, we can cite the vulnerability databases (CNNVD.org.cn and NVD.nist.gov), which contain
a variety of vulnerabilities, including different attributes such as the name and vulnerability priority.
The data in these databases follow a naming standard, making vulnerabilities from completely
different vulnerability databases available in the same standard. This standard facilitates sharing of
vulnerability information (Jia et al., 2018).

O’Donovan et al. (2019) has defined basic naming conventions to differentiate between cyber-
physical interfaces in a fog and cloud architecture. Similarly, García-Holgado and García-Peñalvo
(2019) developed a model-driven approach to model technological ecosystems. First, they proposed
a meta-model specific to technological ecosystems, and then they defined how it can be used through
different phases to generate Platform-Specific Model (PSM) for developing technological learning
ecosystems based on Open Source software. The interesting aspect of their work is how they raised
the importance of the naming convention when building the meta-model for their domain. Indeed,
they have proposed the naming convention associated with their model-driven approach. Nevertheless,
like the other model-building and populating frameworks discussed above, their naming convention
is just a recommendation, and nothing obliges users to follow its rules. This would generate models
that would be difficult to read and interpret.

Jin et al. (2018) developed an approach to extract microservices and propose them to users by
using their functionality instead of other criteria, including whether the definition of the services has
followed a naming convention. However, as pointed by Jin et al., the limitation of relying on the naming
convention to extract microservices consists in the absence of evidence that proves that the naming
of a microservice, its inputs, and its outputs mean the same business capability requested by users.
This risk is because of the lack of rigor when developing the naming convention rules and the lack of
obliging developers to follow the naming convention rigorously. CODVerif aims to lessen that risk.

In software engineering, Mateo Navarro et al. (2016) proposed the S-DAVER framework to
support run-time data verification when the data is populated in software application forms. S-DAVER
allows developers to define verification rules on attributes. Additionally, S-DAVER keeps these
verification rules separated from the software business logic code; thus, the rules can be updated if
needed without affecting the features of the software embedding S-DAVER. Nonetheless, we can
observe that two problems exist that are addressed by CODVerif while S-DAVER does not cover
them. First, S-DAVER could help define simple verification rules. However, for more complex data
insertion scenarios where it is necessary to guide users step by step to insert the data correctly, in
this case, S-DAVER cannot address such scenarios. Second, S-DAVER checks the data only when
the user finishes the insertion. Therefore, s-DAVER cannot implement a complex rule, as we showed
earlier. Thus, with S-DAVER, users will notice an error but cannot manage it.

CONCLUSION

Populating SOA data in a data store could be constrained by standard and naming convention coherency
rules to ensure that the SOA services will be invoked appropriately. This paper proposes CODVerif,
a conceptual framework that helps impose data coherency rules continuously when populating SOA
data in data stores. First, CODVerif delimits its application via an ontology related to the “monitoring

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

21

data insertion” domain. Then CODVerif shows how data coherency rules can be captured and enforced
by defining monitoring data insertion workflows (MDIWs). CODVerif defines instantiation and
composition operations on MDIWs to allow users to capture complex data coherency rules and enforce
them continuously when populating data. Thanks to the delimitation imposed by the monitoring data
insertion workflow ontology, CODVerif also defines the negation operation on MDIWs. This operation
generates MDIWs that aim to “keep” the data coherent when the inverse of populating data actions
are carried out. With our experience, we have identified generic data insertion scenarios that need to
be monitored (GMDIWs) to enforce data coherency rules. We successfully defined MDIWs for these
scenarios and applied them to real-life examples in the CRM Salesforce domain. Students who applied
CODVerif on this use-case have given positive feedback about CODVerif and how it maintains data
coherently in the CRM by considering the provided naming convention. Even though the evaluation
provided positive feedback about CODVerif and has shown that the problem of continuous verification
of SOA data is worth researching, we still plan to apply CODVerif in real-life projects, and this
application would probably allow us to extend the definition of the core components of CODVerif
and make it more comprehensive.

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

22

REFERENCES

Acker, O., Gröne, F., Blockus, A., & Bange, C. (2011). In-memory analytics—Strategies for real-time CRM.
Journal of Database Marketing & Customer Strategy Management, 18(2), 129–136. doi:10.1057/dbm.2011.11

Alshreef, A., Li, L., & Rajeh, W. (2017). Naming convention scheme for role based access control in cloud
based ERP platforms. In K. Kim & N. Joukov (Eds.), Information Science and Applications 2017 (Vol. 424, pp.
84–93). Springer Singapore., doi:10.1007/978-981-10-4154-9_11

Baijens, J., Helms, R., & Iren, D. (2020). Applying Scrum in data science projects. 2020 IEEE 22nd Conference
on Business Informatics (CBI), 1, 30–38. doi:10.1109/CBI49978.2020.00011

Bizagi. (2022). Bizagi web page. https://www.bizagi.com/en

Dhavle, A. A., & Rupp, M. T. (2015). Towards creating the perfect electronic prescription. Journal of the
American Medical Informatics Association, 22(e1), e7–e12. doi:10.1136/amiajnl-2014-002738 PMID:25038197

Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. A. (2013). Fundamentals of business process management.
Springer. doi:10.1007/978-3-642-33143-5

Eisenmann, H., Cazenave, C., & Noblet, T. (2015). RangeDB, the product to meet the challenges of nowadays
System Database. In The 9th ESA Workshop on Simulation for European Space Programmes. ESA.

Figl, K., Mendling, J., Tokdemir, G., & Vanthienen, J. (2018). What we know and what we do not know about
DMN. Enterprise Modelling and Information Systems Architectures, 13(2), 1–16. doi:10.18417/emisa.13.2

Fischer, P. M., Deshmukh, M., Maiwald, V., Quantius, D., Gomez, A. M., & Gerndt, A. (2018). Conceptual
data model: A foundation for successful concurrent engineering. Concurrent Engineering, 26(1), 55–76.
doi:10.1177/1063293X17734592

García-Holgado, A., & García-Peñalvo, F. J. (2019). Validation of the learning ecosystem metamodel using
transformation rules. Future Generation Computer Systems, 91, 300–310. doi:10.1016/j.future.2018.09.011

Harding, L., & Bayliss, L. (2022). Salesforce platform governance method: A guide to governing changes,
development, and enhancements on the Salesforce platform. Apress. doi:10.1007/978-1-4842-7404-0

Hobsch, M., & Schmidhuber, M. (2022). Software and systems. In F. Sellmaier, T. Uhlig, & M. Schmidhuber
(Eds.), Spacecraft operations (pp. 213–241). Springer International Publishing. doi:10.1007/978-3-030-88593-
9_12

Jia, Y., Qi, Y., Shang, H., Jiang, R., & Li, A. (2018). A practical approach to constructing a knowledge graph
for cybersecurity. Engineering, 4(1), 53–60. doi:10.1016/j.eng.2018.01.004

Jin, W., Liu, T., Zheng, Q., Cui, D., & Cai, Y. (2018). Functionality-oriented microservice extraction based on
execution trace clustering. 2018 IEEE International Conference on Web Services (ICWS), 211–218. doi:10.1109/
ICWS.2018.00034

Kazmirchuk, P. (2017). Managing telemetry definitions on the fly. In The 11th ESA Workshop on Simulation for
European Space Programmes. ESA.

Keel, J. (2016). Salesforce.com lightning process builder and visual workflow: A practical guide to model-driven
development on the Force.com platform. Apress. doi:10.1007/978-1-4842-1691-0

Lara, J. A., De Sojo, A. A., Aljawarneh, S., Schumaker, R. P., & Al-Shargabi, B. (2020). Developing big data
projects in open university engineering courses: Lessons learned. IEEE Access: Practical Innovations, Open
Solutions, 8, 22988–23001. doi:10.1109/ACCESS.2020.2968969

Leopold, H., Eid-Sabbagh, R.-H., Mendling, J., Azevedo, L. G., & Baião, F. A. (2013). Detection of naming
convention violations in process models for different languages. Decision Support Systems, 56(C), 310–325.
doi:10.1016/j.dss.2013.06.014

Mateo Navarro, P. L., Ruiz, D. S., & Pérez, G. M. (2016). A lightweight framework for dynamic GUI data
verification based on scripts. Software Testing, Verification & Reliability, 26(2), 95–118. doi:10.1002/stvr.1579

http://dx.doi.org/10.1057/dbm.2011.11
http://dx.doi.org/10.1007/978-981-10-4154-9_11
http://dx.doi.org/10.1109/CBI49978.2020.00011
https://www.bizagi.com/en
http://dx.doi.org/10.1136/amiajnl-2014-002738
http://www.ncbi.nlm.nih.gov/pubmed/25038197
http://dx.doi.org/10.1007/978-3-642-33143-5
http://dx.doi.org/10.18417/emisa.13.2
http://dx.doi.org/10.1177/1063293X17734592
http://dx.doi.org/10.1016/j.future.2018.09.011
http://dx.doi.org/10.1007/978-1-4842-7404-0
http://dx.doi.org/10.1007/978-3-030-88593-9_12
http://dx.doi.org/10.1007/978-3-030-88593-9_12
http://dx.doi.org/10.1016/j.eng.2018.01.004
http://dx.doi.org/10.1109/ICWS.2018.00034
http://dx.doi.org/10.1109/ICWS.2018.00034
http://dx.doi.org/10.1007/978-1-4842-1691-0
http://dx.doi.org/10.1109/ACCESS.2020.2968969
http://dx.doi.org/10.1016/j.dss.2013.06.014
http://dx.doi.org/10.1002/stvr.1579

International Journal of Systems and Service-Oriented Engineering
Volume 12 • Issue 1

23

Malik Khalfallah received a PhD in computer science Lyon 1 University in 2014. He is currently a research engineer.
His current research interests include services mediation, interoperability of business processes in complex product
development environments.

Parisa Ghodous is currently full professor in computer science department of University of Lyon I. She is member
of LIRIS UMR 5205 (Laboratory of Computer Graphics, Images and Information Systems). Her research expertise
is in the following areas: Interoperability, Web semantic, Web services, Collaborative modeling, Product data
exchange and modeling and Standards, She is in editorial boards of CERA, ICAE, and IJAM journals and in the
committees of many relevant international associations such as concurrent engineering, ISPE, Interoperability.

O’Donovan, P., Gallagher, C., Leahy, K., & O’Sullivan, D. T. J. (2019). A comparison of fog and cloud computing
cyber-physical interfaces for Industry 4.0 real-time embedded machine learning engineering applications.
Computers in Industry, 110(C), 12–35. doi:10.1016/j.compind.2019.04.016

ObjectManagementGroup. (2022). Object management group business process model and notation. https://
www.bpmn.org/

Osorio, R. V., Lemos, J. P., Beech, T. W., Julian, G. G., & Chaumon, J.-P. (2006). SCOS-2000 Release 4.0:
Multi-mission/Multi-Domain Capabilities in ESA SCOS-2000 MCS Kernel. 2006 IEEE Aerospace Conference,
1–17. doi:10.1109/AERO.2006.1656141

Paniagua, C., Eliasson, J., Hegedus, C., & Delsing, J. (2019). System of Systems integration via a structured
naming convention. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), 1, 132–139.
doi:10.1109/INDIN41052.2019.8972250

Shaalan, S. (2020). Salesforce for Beginners. Packt Pub.

Shi, N.-Z., & Tao, J. (2009). Statistical hypothesis testing: Theory and methods. World Scientific Publishing
Company.

Tudorache, T., Vendetti, J., & Noy, N. (2008). Web-Protege: A lightweight OWL ontology editor for the web.
Fifth OWLED Workshop on OWL: Experiences and Directions.

van der Aalst, W. M. P., & Pesic, M. (2006). DecSerFlow: Towards a truly declarative service flow
language. Proceedings of the Third International Conference on Web Services and Formal Methods, 1–23.
doi:10.1007/11841197_1

van der Aalst, W. M. P., Weske, M., & Grünbauer, D. (2005). Case handling: A new paradigm for business
process support. Data & Knowledge Engineering, 53(2), 129–162. doi:10.1016/j.datak.2004.07.003

Wang, L., Wakikawa, R., Kuntz, R., Vuyyuru, R., & Zhang, L. (2012). Data naming in Vehicle-to-
Vehicle communications. 2012 Proceedings IEEE INFOCOM Workshops, 328–333. doi:10.1109/
INFCOMW.2012.6193515

Ye, J., Sun, S., Wen, L., & Song, W. (2008). Transformation of BPMN to YAWL. 2008 International Conference
on Computer Science and Software Engineering, 2, 354–359. doi:10.1109/CSSE.2008.980

Yousfi, A., Bauer, C., Saidi, R., & Dey, A. K. (2016). uBPMN: A BPMN extension for modeling ubiquitous
business processes. Information and Software Technology, 74, 55–68. doi:10.1016/j.infsof.2016.02.002

Yu, L. (2014). A developer’s guide to the semantic web. Springer. https://link.springer.com/book/10.1007/978-
3-662-43796-4

Yuan, J. X. (2012). Liferay portal systems development. Packt Publishing.

Zou, K. H., Fielding, J. R., Silverman, S. G., & Tempany, C. M. C. (2003). Hypothesis testing I: Proportions.
Radiology, 226(3), 609–613. doi:10.1148/radiol.2263011500 PMID:12601204

http://dx.doi.org/10.1016/j.compind.2019.04.016
https://www.bpmn.org/
https://www.bpmn.org/
http://dx.doi.org/10.1109/AERO.2006.1656141
http://dx.doi.org/10.1109/INDIN41052.2019.8972250
http://dx.doi.org/10.1007/11841197_1
http://dx.doi.org/10.1016/j.datak.2004.07.003
http://dx.doi.org/10.1109/INFCOMW.2012.6193515
http://dx.doi.org/10.1109/INFCOMW.2012.6193515
http://dx.doi.org/10.1109/CSSE.2008.980
http://dx.doi.org/10.1016/j.infsof.2016.02.002
https://link.springer.com/book/10.1007/978-3-662-43796-4
https://link.springer.com/book/10.1007/978-3-662-43796-4
http://dx.doi.org/10.1148/radiol.2263011500
http://www.ncbi.nlm.nih.gov/pubmed/12601204

