
DOI: 10.4018/IJESGT.331401

International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Comparative Performance and Energy 
Efficiency Analysis of JVM Variants 
and GraalVM in Java Applications
Thalita Grange Vergilio, Leeds Beckett University, UK*

Long Do Ha, Leeds Beckett University, UK

Ah-Lian G. Kor, Leeds Beckett University, UK

ABSTRACT

Java has dominated the ICT market for almost thirty years with various applications in nearly every 
sector all over the world. One of Java’s main drawbacks comes from its heavyweight core - the Java 
Virtual Machine (JVM). Therefore, several JVM distributions have been developed to address this 
issue. GraalVM is the most promising amongst the recent distributions, providing better performance, 
low power consumption, and reduced carbon footprint emissions. In this research, a comparative 
analysis based on performance and energy efficiency metrics was conducted to assess this JVM 
distribution in light of three other classic JVM distributions: Amazon Corretto, Adopt OpenJDK, and 
Zulu. Findings showed that, although there was no significant difference between the test candidates, 
GraalVM seemed to be the leading JVM distribution. It is recommended that programmers and 
technology businesses consider adopting GraalVM in their future Java applications because of its 
energy efficiency.

Keywords:
Java, JVM, OpenJDK, Amazon Corretto, Zulu, GraalVM, Oracle, energy consumption, carbon footprint, 
performance

1. COMPARATIVE PERFORMANCE AND ENERGY EFFICIENCY ANALYSIS 
OF JVM VARIANTS AND GRAALVM IN JAVA APPLICATIONS

1.1. Background Context
Since its introduction approximately thirty years ago by James Gosling and his colleagues at Sun 
Microsystems (Rauf, 2018), Java has grown to become one of the most extensively used programming 
languages. It has acquired popularity and become a market leader in almost every programming 
environment, particularly enterprise applications, server-side Web development, and mobile phone 



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

2

programming (Evans, 2015). According to Floyer (2020), a survey carried out by Wikibon in 2020 
showed that 93% of enterprises chose Java as their leading application development platform, with 
C++ and Python ranking far behind with, respectively, 51% and 29% of respondents. However, Java 
is still a heavyweight programming language, mainly due to applications processed on the Java Virtual 
Machine (JVM). Thus, every Java program needs considerable memory and processing resources 
(GeeksForGeeks, 2019), which creates a financial burden for small and medium enterprises (SMEs) 
due to its high energy consumption. Understanding this problem, various JVM providers have released 
improved JVM distributions with reduced runtime memory CPU usage, such as Adopt OpenJDK 
HotSpot, Amazon Corretto, and Redhat Mandrel. These variants have, to different extent, addressed 
the original JVM’s issues. The most noticeable JVM distribution, however, is Oracle’s GraalVM, 
which provides several significant improvements and the ability to compile Java source code into 
a standalone binary executable program called native image (Graalvm.org, n. d.). Although several 
studies have been conducted to compare the performance of the GraalVM with other improved JVM 
distributions, limited work focuses on the sustainability aspect (Ournani et al., 2021). This paper 
considers both aspects by carrying out practical experiments with different scenarios to explore 
whether GraalVM is a worthy upgrade for SMEs in terms of performance and energy efficiency.

1.2. Aim and Objectives
With the support of eight benchmark tests, this study investigates the performance and energy 
consumption of three selected JVM distributions (Amazon Corretto, Adopt OpenJDK, Zulu), and 
GraalVM. The research objectives are listed below:

1. 	 Based on the appropriate literature review, design scenarios and test suites to measure performance 
and energy consumption for chosen JVM distribution candidates.

2. 	 To identify optimal performance and energy consumption measuring methods and tools to apply.
3. 	 Based on outcomes from (1) and (2), carry out experiments and conduct a comparative analysis 

of these JVM distributions and GraalVM based on performance and energy efficiency criteria.
4. 	 To apply data analysis approaches to the experimental data to answer three research questions:

1.2.1 Level 1: Descriptive Statistical Analysis

a. 	 Utilizing the same specified scenarios and test suites, how do the selected JVM distributions 
compare with GraalVM in terms of performance and energy consumption?

1.2.2 Level 2: Inferential Statistical Analysis

b. 	 Are there any remarkable differences in performance and energy consumption between GraalVM 
and the selected JVM distributions?

c. 	 How can GraalVM support SMEs in monthly energy costs reduction?
5. 	 To present conclusions and possible recommendations based on analytical findings and 

suggest future research work.

1.2.2.1 Rationale
Energy efficiency is becoming a serious challenge due to the prevalence of Information Technology 
systems and their impact on global energy usage (Ergasheva et al., 2020). If we do not address this 
problem satisfactorily, it might lead to severe consequences for current and future generations, such as 
resource depletion and global warming. Software developers frequently state that sustainable solutions 
should come from more energy-efficient hardware components or efficient algorithms (Ournani et 



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

3

al., 2021). However, given the complexity of today’s software environments, the composition of 
software layers makes this goal particularly difficult to attain. Therefore, modifying the abstraction 
layer for a programming language is extremely important, especially for Java, which is one of the 
current top five programming languages (TIOBE Software, 2023). When comparing Java’s JVM 
distributions, decisive criteria (i.e., performance, memory usage, and CPU usage) would help ascertain 
which distribution is better for Java applications development. There is limited research on energy 
efficiency and its trade-off with performance for different JVM distributions. Therefore, this research 
is conducted to address this pressing issue.
1.2.2.2 Scope
Three distribution candidates were selected, and their performance and energy consumption 
measured by the experiments in this paper. Apart from GraalVM, the criteria to choose the other JVM 
distributions were current market usage and non-commercial usage. The latter makes this research 
particularly relevant to SMEs. Therefore, based on the information reported by Vermeer in 2020, 
Adopt OpenJDK, Amazon Corretto OpenJDK, and Azul Zulu were identified as ideal candidates 
with 24%, 4%, and 4% of usage respondents, respectively. This research aims to extend the scope so 
that it encompasses a comparative analysis of the carbon footprint for GraalVM and selected JVM 
distributions followed by a discussion of their environmental impact in eight different scenarios 
based on benchmark tests. This paper will not consider variations in the JVM configurations of any 
distributions. Therefore, all configurations were set to default before conducting experiments to 
ensure objectivity and consistency. All experiments were conducted on a Dell Vostro 5502 personal 
computer powered by an 11th Gen Intel Core i7 processor (8 CPU) with 16GB RAM, 512GB SSD, 
and running the Windows 11 Pro 64-bit operating system, as specified in Table 1. Performance was 
measured based on the CPU and memory usage of the computer during the experiments.
1.2.2.3 Contribution of Research
In this study, the three most popular JVM distributions and GraalVM are assessed and compared 
with each other by using software-defined power toolkit benchmarks and carbon emission estimation 
metrics in different test scenarios. The study entailed Descriptive and Inferential Statistical Analyses 
on the experimental data to derive conclusions which might be utilized to inform JVM selection. The 
positive findings could lead to further future research, enabling software engineers and organizations, 
especially SMEs, to make optimal evidence informed decisions.
1.2.2.4 Organization of Report
There are five sections in this paper. The first section describes the background context and clarifies 
the research’s main research questions and objectives. The second section provides an overview of 
related work that supports this research. The methodologies used to design and conduct the experiments 
and analyse the results are presented in Section 3. In Section 4, the experimental results are collected, 
analysed, and discussed. Finally, Section 5 utilizes these results to conclude the paper and provide 
evidence-based recommendations.

2. LITERATURE REVIEW

2.1. ICT and Environment Impact
It is an accepted fact that rapid advancements in ICT have been matched by an increase in the number 
of digitized devices and services over the last two decades. These have been beneficial in different 
ways. With the support of AI and big data, for instance, technology devices have been utilized for 
patient screening, outbreak monitoring, case tracking and tracing, disease prediction, and infection 
risk assessment. Another beneficial example is 3D printing which enables quicker and more 
affordable low-volume production as well as quick, iterative product prototyping (United Nations, 



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

4

2021). However, according to Mahdavi and Sojoodi (2021), this sector is a double-edged sword for 
the environment. It can have both positive and negative impacts on environmental sustainability. 
On the one hand, technology products allow humanity to monitor and control the environment, 
such as measuring GHG emissions to inform drivers to modify their driving behaviour to be more 
environment friendly. Moreover, by modifying the pattern of household energy usage, ICT could 
reduce power consumption and improve energy efficiency (Bastida et al., 2019). Other research seems 
to confirm that ICT mitigates energy loss through optimal solutions, such as intelligent networks 
and automated lighting, heating, and cooling management systems (Houghton, 2009). On the other 
hand, ICT applications without environmental awareness might lead to severe problems to our fragile 
ecosystem. To be more specific, Avom et al. (2020) found that mobile phone and Internet penetration 
have a significantly negative effect on the environment by increasing the volume of CO2 emissions. 
In a study conducted by Arushanyan et al. (2014), ICT products and services were found to play a 
vital role in global energy consumption and global warming. An enhanced ICT use efficiency has 
the potential to lower energy prices, thus encouraging greater efficient energy consumption.

2.2. Java and the JVM
Back in the 1990s, the Internet blossomed in a way that we have never seen before. Due to this 
remarkable growth, several new general-purpose programming languages were developed and applied 
to various sectors in that period, namely Haskell (1990), Python (1991), Visual Basic (1991), Ruby 
(1993), Lua (1993), R (1993), Java (1995), Javascript (1995), and PHP (1995) (Long, 2017). Among 
these programming languages, Java has dominated the popularity chart for almost 20 years, ranking 
first from 2002 to 2017, and staying amongst the top three programming languages since 1987, as 
shown in Figure 1.

In the past 20 years, platform independence is one of the most distinctive features that has made 
Java stand out compared with other programming languages. The applications of Java can be found 
in various places, including computers, smartphones, and even parking metres (Lestal, 2021). This 
was also the most important principle when James Gosling and a group of engineers at the United 
States’s Sun Microsystems decided to create it in 1991 (Ikedilo et al., 2021). It was later promoted 
as “Write once, run anywhere” (WORA) to draw the attention of the technology community at 
that time. Apart from this principle, as Gosling et al. clarified in 2018, Java is a general-purpose, 
concurrent, class-based, object-oriented programming language. It is designed to be basic enough 
that even inexperienced coders can quickly pick it up. The Java programming language is similar to 

Figure 1. Programming Language Chart Since 1987 (TIOBE Software, 2023)



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

5

C and C++, although it is organised differently, with some C and C++ features eliminated, and a 
few concepts from other languages incorporated. A typical Java application is illustrated in Figure 2.

Normally, a Java application undergoes five distinct phases: edit, compile, load, verify, and 
execute (Deitel & Deitel, 2019).

The first and the second phases are done by programmers (Figure 3 and Figure 4), while the 
remaining three phases are handled by the core of the programming language: the Java Virtual Machine 
(JVM). Basically, when executing a compiled java program with the command “java className,” the 
JVM loads the program into memory for execution by a component named ClassLoader (Figure 5).

Figure 2. A Java application

Figure 3. Java program execution: Phase 1 (Deitel & Deitel, 2019)

Figure 4. Java program execution:Phase 2 (Deitel & Deitel, 2019)



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

6

After the program has been loaded, the Bytecode Verifier component checks whether the 
program is valid or not based on Java’s security restrictions (Figure 6). Subsequently, in the final 
phase, the JVM executes the bytecodes to run the program’s stated instructions (Figure 7). Deitel 
and Deitel (2019) also stated that the JVM was originally just a Java bytecode interpreter because 
the JVM interpreted and executed one bytecode at a time and, consequently, most programs would 
run slowly. Nowadays, it uses a combination of interpretation and just-in-time (JIT) compilation to 
execute bytecode faster (Deitel & Deitel, 2019).

As illustrated in Figures 3 and 4, the JVM is required for a Java program to be executable. 
Therefore, a compiled language program such as Java normally utilizes more memory and processing 
power than its interpreted alternatives. Many JVM improvements and distributions have been released 
to address this issue and improve Java applications’ performance while utilising as minimal computing 
resources as possible (Ournani et al., 2021). When writing this paper, Java 17 has been published as 
the latest Long Term Support (LTS) version. Oracle urges developers to upgrade to the most recent 
version or an LTS release as soon as possible since the legacy versions incur lower performance and 
will phase out of support in the near future (Ournani et al., 2021).

2.3. GraalVM
As previously mentioned, JVM improvements and distributions have been published continuously 
to enhance performance and/or patch existing problems. Amongst all distributions, GraalVM is the 
most distinctive, since it is a high-performance VM built on the JVM and provides a number of 
optimisation facilities (Kumar, 2021a). It was created as part of OpenJDK’s Graal Project in 2012, 
which aimed to create a next-generation high-performance polyglot virtual machine with an extensive 

Figure 5. Java program execution: Phase 3 (Deitel & Deitel, 2019)

Figure 6. Java program execution: Phase 4 (Deitel & Deitel, 2019)



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

7

ecosystem that included the Graal Compiler, GraalVM Native Image Mechanism, Truffle Language 
Implementation Framework, and Sulong Language Implementation Framework (LLVM) (Sipek et 
al., 2020). Figure 8 below is an illustration of the Graal stack.

In his blog post, Kumar explained every component in this stack in detail. The JVM (Hotspot) is 
simply a JVM in the JDK (Kumar, 2021b). The JVM Compiler Interface (JVMCI) was introduced with 
Java 9, making it possible to write compilers as plugins that the JVM could use for dynamic compilation. It 
included an API and a protocol for creating compilers with customized implementations and optimisations. 
Noticeably, the Graal Compiler and Substrate VM offer memory management, garbage collection, thread 
scheduling, and other necessary VM functionality. Additionally, the GraalVM can build native images for 
a specific target OS/architecture utilising the Ahead-Of-Time application compilation mechanism. This 
feature is responsible for a reduced footprint, quick startups, and embeddable runtimes, therefore playing 
a pivotal role in cloud-native and serverless workloads. Based on the target OS, a native image is compiled 
which includes the application source code, dependencies, the JDK, and Substrate VM. This means the 
target OS does not need to install a specific JVM to get the application up and running as the image is 
executable for the target OS without any further requirements. The whole process is presented in Figure 9.

Lastly, Truffle and Sulong are two components on top of the stack which ensure the polyglot 
capability, as well as interoperability in a cloud-native environment by enabling multiple non-JVM 

Figure 7. Java program execution: Phase 5 (Deitel & Deitel, 2019)

Figure 8. Graal Stack (Kumar, 2021b)



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

8

programming languages compilation such as C, C++, Rust, Swift, Fortran, Javascript, Python, and 
R (Kumar, 2021b). Given these advancements, GraalVM is projected to be a pioneering multilingual 
virtual machine that is already supporting companies to save computer resources and costs (Morales, 
2019). In fact, a study conducted by Ournani with eleven JVM distributions showed that, in most 
cases, GraalVM was the most energy efficient distribution (Ournani et al., 2021). Their results are 
in line with and corroborate the research presented in this paper.

2.4. Energy Measurement and Optimisation Tools
Energy management at a higher level requires monitoring or estimation of hardware and software 
energy as well as resource consumption (Noureddine et al., 2013). Therefore, energy measurement 
and optimisation tools are vital for optimal energy management. Nowadays, such tools are diverse 
and could provide insightful energy consumption-related information for various types of applications 
such as software and media players (Kor et al., 2015).

PowerAPI, developed by the Inria ADAM project team, is one of the most popular energy 
monitoring tools. It could measure energy consumption at the granularity of a system process, in real-
time, and without any external device. To assess the power usage of a software system, PowerAPI uses 
energy analytical models to estimate based on the consumption of a computer’s hardware components 
such as CPU, memory, and disk (Bourdon et al., 2013).

Another widely used alternative is Microsoft Joulemeter. This software could measure and 
record the energy consumption of hardware resources such as CPU, base system, and disk in Watt 
(W) (Sehgal et al., 2022). A study conducted by Kansal et al. (2009) showed that proper usage of 
Joulemeter might result in about an 8-12% reduction of power provisioning costs when operating in 
a Virtual Machine environment.

3. METHODOLOGY

3.1. Macro Methodology
There are three widely used standards, originating from ISO 14040 and 14044, to assess the 
environmental impact of ICT products/services lifecycle (Stephens & Didden, 2013):

Figure 9. Graal Ahead-Of-Time Compilation (Kumar, 2021b)



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

9

•	 ETSI – TS 103 199 “Life Cycle Assessment (LCA) of ICT equipment, networks, and services: 
General methodology and common requirements.”

•	 ITU-T L.1410 “Methodology for environmental impact assessment of information.”
•	 IEC TR 62725 “Quantification methodology of greenhouse gas emissions for electrical and 

electronic products and systems.”

This study will follow the ITU-T L.1410 methodology issued by the International 
Telecommunication Union (ITU) to conduct an analysis of the energy consumption and carbon 
emissions of GraalVM and other JVM distributions. According to ITU’s recommendation, the 
environmental effects of ICT goods, networks, and services are assessed by a systematic analytical 
method called Life Cycle Assessment (LCA) (ITU-T, 2012). This method provides a cradle-to-grave 
scope that considers all stages of a product such as raw material acquisition, manufacturing, use/reuse/
maintenance, and recycle/waste management. The four phases of this methodology are illustrated 
in Figure 10.

•	 Goal and scope definition: research purpose, boundaries of the systems, requirements of data 
quality, and functional units are clearly explained in this phase to provide a solid background 
for the study.

•	 Life cycle inventory (LCI): in the second phase, data collection, calculation, and allocation 
procedures are carried out using information obtained in the first phase.

•	 Life cycle impact assessment (LCIA): this phase involves evaluating the data that has been 
obtained. The data gathered throughout the studies will be examined to determine the 
environmental impact of power consumption and carbon emissions.

•	 Life cycle interpretation: using results from LCI and LCIA, this phase highlights significant 
problems, completeness, sensitivity, consistency assessment, and provides conclusions and 
recommendations for the system.

Figure 10. Fixed Phases of an LCA



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

10

•	 Reporting (additional phase): after interpreting the results, reporting is crucial to convey the 
findings to stakeholders conveniently and support users to make evidence-informed decisions.

3.2. Micro Methodology
To measure the performance and energy consumption of GraalVM and other JVM distributions, a 
dedicated test environment was designed and installed on a laptop with the specifications shown in 
Table 1.

Based on these hardware specifications, Joulemeter 1.2 was the ideal candidate to quantitatively 
measure and gather program execution duration and energy usage data. This tool is Windows-friendly, 
easy to use, and provides detailed data on the CPU, software applications, and the monitor (Kor et 
al., 2015).

Windows Subsystem for Linux (WSL) 2 was used as a standalone testing environment for all 
experiments conducted in this paper to ensure flexibility when switching between several experiments 
and the objectivity of the results. This impressive feature has been introduced since Windows 10 
version 1607, which provides identical capabilities to utilising Linux applications and libraries within 
the Bash shell (Singh & Gupta, 2019).

3.3. Environment Setup
As mentioned above, all experiments in this paper were conducted in a standalone environment, 
and the results were collected via Joulemeter as another process in Windows. Figure 11 shows the 
overall experiment design.

Inside the Windows 11 host machine, there are three components: WSL2 with Ubuntu 20.04 
Distribution, Joulemeter 1.2, and SSD storage to store CSV files:

•	 WSL2 with Ubuntu 20.04 Distribution hosts all necessary applications and libraries for 
executing the benchmark tests. The two most important parts of this component are Software 
Development Kit Manager (SDKMAN) and renaissance-benchmarks. SDKMAN is a program for 
managing the installation and selection of Software Development Kits, which includes multiple 
versions and releases of Java and tools for creating, debugging, monitoring, documenting, and 
deploying applications. It is compatible with Windows (not natively supported, it needs to be 
installed via WSL, Cygwin, or MinGW), Linux, and macOS (Gilliard, 2020). Before carrying 
out the experiments, several JDK candidates were installed using SDKMAN. OpenJDK 11.0.2, 
Amazon Corretto 11.0.14.1, and Zulu 11.0.14 (three examples of classic JVM distributions) 

Table 1. Laptop specifications

Type Specification

Model Dell Vostro 5502

Operating System Windows 11 Pro 64-bit(10.0, Build 22000)

Processor 11th Gen Intel Core i7-1165G7,2.8GHz (8 CPUs), 1.7GHz

GPU NVIDIA GeForce MX330,GDDRAM5 2GB

Battery 40Wh

Screen 15.6-inch, resolution 1920 x 1080p,Full HD. Luminance 300 nits

Storage SSD 512GB

RAM 16GB

Maximum Power Supply 65 Watt



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

11

and GraalVM 21.3.1 (build 11.0.14) (as a GraalVM alternative) were selected for this study. 
To assess the performance and power consumption of these JVM distributions, the Renaissance 
benchmark suite was used as a benchmark suite. It comprises 21 benchmarks created in popular 
Java and Scala frameworks that illustrate modern concurrency and parallelism workloads. The 
Renaissance benchmark suite was invented to provide a more efficient tool to identify new 
compiler optimisations compared with existing test benchmarks such as DaCapo (used by Ournani 
et al., 2021), ScalaBench, and SPECjvm2008 (Prokopec et al., 2019). This paper has considered 
all Apache Spark test cases in the benchmark to measure performance and power consumption.

•	 Before measurement, it was necessary to configure Joulemeter in advance. In fact, the 
configurations depend on the computer model and hardware. Based on the information from the 
previous section, the laptop profile was chosen as the profile configuration for Joulemeter. The 
configuration information is shown in Figure 12. On the power usage tab, the program name 
‘vmmem’ is specified as the target process to measure and collect the power consumption data. 
Figure 13 depicts this step in detail.

3.4. Conducting the Experiments
Eight benchmark tests were used to conduct experiments for five test candidates: OpenJDK 11.0.12, 
Amazon Corretto 11.0.14.1, Zulu 11.0.14, GraalVM 21.3.1 (build 11.0.14), and GraalVM 21.3.1 (build 
11.0.14) with the native image. Each test was repeated five times to ensure fairness and consistency. 
The specification of each benchmark test is summarised in Table 2. The results obtained from each 
test iteration were stored in a CSV file. Subsequently, information from the CSV files was grouped 
by individual benchmark test to be analysed and discussed.

4. FINDINGS AND DISCUSSION

In this study, a total of 200 experiments were carried out using 8 benchmark tests. The results for 
both performance and energy consumption criteria are discussed for two distinct groups: Classic JVM 
distribution candidates (OpenJDK, Amazon Corretto and Zulu) and GraalVM-based JVM distribution 
candidates (GraalVM and GraalVM’s native image). Furthermore, the carbon footprint (based on 

Figure 11. Experiment design



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

12

energy consumption information) for each test iteration was also analysed. This paper focuses on the 
program execution time in each test for comparative performance analysis. A lower execution time 
for any JVM candidate infers better performance.

This study also focuses on energy consumption and carbon emissions analyses. Apart from 
descriptive statistics, Welch’s t-test and ANOVA test were used to explore if there was any significant 
difference between the two candidate groups. The following sub-section presents this analysis in detail.

4.1. Performance Analysis
The aggregate of all five experimental runs for each benchmark test was used to calculate the total 
execution time for three classic JVM distribution candidates and two GraalVM-based candidates, 
as shown in Table 3.

The figures in Table 3 also show there are differences between the first and second groups. To 
be more specific, GraalVM 21.3.1 (build 11.0.14) and its native image performed well in ALS, Chi-
square, Decision Tree, Log Regression, Movie Lens, and Page Rank benchmark tests with the lowest 
aggregated execution time over five iterations amongst all candidates. In contrast, they had poor results 
when used in Gauss-mix and Naive Bayes benchmark tests, occupying the fourth and fifth ranked 
positions, respectively. Figure 14 below uses Table 3’s data to illustrate the total execution time gap 
in graphs, and Table 4 utilizes experiment results to conclude the overall performance ranking of 
each candidate.

From these tables and the figure, it seems to imply that in general GraalVM 21.3.1 applications 
provide better performance compared with applications utilising OpenJDK 11.0.12, Amazon Corretto 
11.0.14.1, and Zulu 11.0.14. Although the difference is not significant, saving even one second of 
execution time might bring enormous technology benefits for SMEs in the long run.

4.2. Energy Consumption Analysis
A one-way ANOVA one-tailed test and a two-tailed Welch’s t-test were employed as inferential analysis 
methods for Aggregated Average Energy Consumption per second. ANOVA statistical analysis were 

Figure 12. Joulemeter configurations



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

13

Figure 13. Joulemeter with target program name

Table 2. Benchmark test specifications (Renaissance, no date)

JVM Distributions Aggregated Test Case Execution Time (s)

ALS Chi-
square

Decision 
Tree

Gauss-
mix

Log 
Regression

Movie 
Lens

Naive 
Bayes

Page 
Rank

OpenJDK 11.0.12 1346.26 302.30 241.84 258.77 213.14 1336.61 2092.98 961.76

Amazon Corretto 11.0.14 1192.59 272.96 234.62 236.97 193.11 1237.31 2052.57 940.81

Zulu 11.0.14 1135.50 288.14 232.50 241.84 191.76 1237.87 2012.46 908.08

GraalVM 21.3.1 (build 11.0.14) 1125.23 263.17 218.14 255.85 186.53 1189.21 2237.55 864.30

GraalVM 21.3.1 (build 11.0.14) 
Native Image

1129.64 255.58 217.99 250.40 186.71 1182.09 2206.81 875.43



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

14

conducted for all 8 benchmark tests while Welch’s t-tests were conducted for each pair of benchmark 
tests. Before implementing the ANOVA test and Welch’s t-test, two hypotheses were drawn as below:

•	 ANOVA test
◦◦ H0 (Null hypothesis): There is no significant energy consumption difference between 

OpenJDK, Amazon Corretto, Zulu, GraalVM, and GraalVM’s native image.
◦◦ H1: There is a significant energy consumption difference between OpenJDK, Amazon 

Corretto, Zulu, GraalVM, and GraalVM’s native image.
•	 Welch’s t-test

◦◦ H0 (Null hypothesis): There is no significant energy consumption difference between classic 
JVM distribution candidates (OpenJDK, Amazon Corretto, and Zulu) and GraalVM-based 
candidates in the benchmark test.

◦◦ H1: There is a significant energy consumption difference between classic JVM distribution 
candidates (OpenJDK, Amazon Corretto, and Zulu) and GraalVM-based candidates in the 
benchmark test.

The chosen confidence level in both tests was 95%, and the alpha value was 0.05. The data 
presented in Table 5 and Figure 15 was used as inputs for implementing these two tests. A detailed 
discussion of the results is delivered in the following subsection.

Table 3. Aggregated execution time in second

Test Case Description Repetitions

Chi-square Execute the chi-square test with the support of Apache Spark library 60

Decision Tree Runs the Spark ML library’s Random Forest algorithm 40

Gaussian Mixture Using expectation-maximisation, creates a Gaussian mixture model 40

Logistic Regression Execute the Spark ML library’s Logistic Regression algorithm 20

Movie Lens (using 
the ALS algorithm)

Provide movie recommendations with ALS algorithm 20

Naive Bayes Runs the Spark ML library’s multinomial Naive Bayes algorithm 30

Page Rank Using Apache Spark’s Resilient Distributed Datasets, iterate a number of PageRank 20

Table 4. Overall performance ranking

JVM Distributions Individual Performance Ranking Average Overall 
RankingALS Chi-

square
Decision 
Tree

Gauss-
mix

Log 
Regression

Movie 
Lens

Naive 
Bayes

Page 
Rank

OpenJDK 11.0.12 5 5 5 5 5 5 3 5 4.75 5

Amazon Corretto 
11.0.14

4 3 4 1 4 3 2 4 3.13 4

Zulu 11.0.14 3 4 3 2 3 4 1 3 2.88 3

GraalVM 21.3.1 
(build 11.0.14)

1 2 2 4 1 2 5 1 2.25 2

GraalVM 21.3.1 
(build 11.0.14) 
Native Image

2 1 1 3 2 1 4 2 2 1



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

15

This paper also analyses and compares other factors in each benchmark test. Those factors 
include Aggregated Hardware Energy Consumption, Aggregated Application Energy Consumption, 
Aggregated CPU, Aggregated Monitor, Aggregated Disk, and Aggregated Base Energy Consumption.

4.3. ANOVA test
Given the data in Table 5, the p-value for the one-way ANOVA one-tailed test is 0.999821686. 
Since this p-value is greater than the alpha value (0.05), the null hypothesis is accepted. The overall 
conclusion is that there is no significant difference between all testing candidates in terms of energy 
consumption when implementing the eight benchmark tests with five iterations. Table 6 presents this 
result and other relevant information.

4.4. Welch’s T-Test
Results from conducting the two-tailed Welch’s t-test for unequal variances are reported for each 
individual benchmark test in Tables 7-14. A t-test was used in this manner to test the hypothesis for 
candidates in every specific benchmark test.

1. 	 ALS: p-value = 0.260367 > alpha = 0.05, therefore, the null hypothesis is accepted for ALS 
benchmark test.

2. 	 Chi-square: p-value = 0.066003 > alpha = 0.05, therefore, the null hypothesis is accepted for 
the Chi-square benchmark test.

3. 	 Decision Tree: p-value = 0.023023 < alpha = 0.05, therefore, the null hypothesis is rejected for 
the Decision Tree benchmark test.

4. 	 Gaussian Mixture: p-value = 0.60798 > alpha = 0.05, therefore, the null hypothesis is accepted 
for the Gaussian Mixture benchmark test.

5. 	 Log Regression: p-value = 0.061698 > alpha = 0.05, therefore, the null hypothesis is accepted 
for the Log Regression benchmark test.

6. 	 Movie Lens: p-value = 0.165228 > alpha = 0.05, therefore, the null hypothesis is accepted for 
the Movie Lens benchmark test.

7. 	 Naive Bayes: p-value = 0.011279 < alpha = 0.05, therefore, the null hypothesis is rejected for 
the Naive Bayes benchmark test.

8. 	 Page Rank: p-value = 0.086889 > alpha = 0.05, therefore, the null hypothesis is accepted for 
the Page Rank benchmark test.

Table 5. Aggregated average energy consumption per second (J/s)

JVM Distributions Aggregated Average Energy Consumption per second (J/s)

ALS Chi-
square

Decision 
Tree

Gauss-
mix

Log 
Regression

Movie 
Lens

Naive 
Bayes

Page 
Rank

OpenJDK 11.0.12 17191.43 2717.43 2329.65 2184.67 2301.90 15874.61 29208.98 11051.08

Amazon Corretto 11.0.14 15134.75 2451.18 2256.14 1974.39 2246.82 14332.56 28513.69 10762.44

Zulu 11.0.14 14506.91 2555.63 2214.98 2021.06 2223.55 14251.94 27908.34 10155.16

GraalVM 21.3.1 (build 
11.0.14)

14351.81 2367.38 2051.26 2119.02 2168.60 13682.63 31193.58 9827.60

GraalVM 21.3.1 (build 
11.0.14) 
Native Image

14348.20 2291.95 2039.06 2079.51 2165.58 13690.66 30756.33 10047.12



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

16

From the above-reported results, it is clear that in 6/8 cases the null hypothesis can be accepted. 
It means there is no significant difference in power consumption between the classic JVM distribution 
candidates and the GraalVM-based candidates when executing algorithms or programs related to 
ALS, Chi-square, Gaussian Mixture, Movie Lens, Page Rank, and Log Regression. For Decision 
Tree and Naive Bayes relevant programs, however, the energy consumption of candidate groups is 
significantly different.

Although the t-test results (table 8-14) showed that the difference between these two groups 
is not significant, GraalVM-based candidates were still leading in most cases. Based on Table 5, a 
ranking table was generated to rank the energy consumption between candidates (Table 15). This 
result matches the finding of Ournani et al. in 2021 that GraalVM’s energy consumption was lower 
than other candidates in most cases.

Table 6. ANOVA test result

Groups Count Sum Average Variance

OpenJDK 11.0.12 8 82859.74 10357.47 98215009.00

Amazon Corretto 11.0.14.1 8 77671.97 9708.99 89895943.00

Zulu 11.0.14 8 75837.58 9479.69 85302863.00

GraalVM 21.3.1 (build 11.0.14) 8 77761.88 9720.24 103707342.90

GraalVM 21.3.1 (build 11.0.14) 
Native Image

8 77418.41 9677.30 101346468.30

Table 6. B

Source of Variation SS df MS F P-value F crit

Between Groups 3539430.00 4 884857.60 0.009246786 0.999822 2.641465

Within Groups 3349273380.00 35 95693525.00

Total 3352812811.00 39

Table 7. ALS T-test results

Variable 1 Variable 2

Mean 2574.748 2329.664

Variance 17995.810 2844.457

Observations 3 2

Hypothesised Mean Difference 1

df 3

t Stat 2.833428

P(T=t) one-tail 0.033001

t Critical one-tail 2.353363

P(T=t) two-tail 0.066003

t Critical two-tail 3.182446



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

17

Table 8. Chi-square T-test results

Variable 1 Variable 2

Mean 15611.03 14350.00

Variance 1971790.00 6.5126

Observations 3 2

Hypothesised Mean Difference 1

df 2

t Stat 1.554209

P(T=t) one-tail 0.130184

t Critical one-tail 2.919986

P(T=t) two-tail 0.260367

t Critical two-tail 4.302653

Table 9. Decision tree t-test results

Variable 1 Variable 2

Mean 2266.926 2045.160

Variance 3374.351 74.527

Observations 3 2

Hypothesised Mean Difference 1

df 2

t Stat 6.476201

P(T=t) one-tail 0.011511

t Critical one-tail 2.919986

P(T=t) two-tail 0.023023

t Critical two-tail 4.302653

Table 10. Gaussian mixture t-test results

Variable 1 Variable 2

Mean 2060.042 2099.265

Variance 12194.560 780.335

Observations 3 2

Hypothesised Mean Difference 1

df 2

t Stat -0.602640

P(T=t) one-tail 0.303990

t Critical one-tail 2.919986

P(T=t) two-tail 0.607980

t Critical two-tail 4.302653



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

18

Table 11. Log regression t-test results

Variable 1 Variable 2

Mean 2257.423 2167.091

Variance 1619.141 4.561

Observations 3 2

Hypothesised Mean Difference 1

df 2

t Stat 3.837187

P(T=t) one-tail 0.030849

t Critical one-tail 2.919986

P(T=t) two-tail 0.061698

t Critical two-tail 4.302653

Table 12. Movie lens t-test results

Variable 1 Variable 2

Mean 14819.70 13686.65

Variance 836242.10 32.26

Observations 3 2

Hypothesised Mean Difference 1

df 2

t Stat 2.144126

P(T=t) one-tail 0.082614

t Critical one-tail 2.919986

P(T=t) two-tail 0.165228

t Critical two-tail 4.302653

Table 13. Naive bayes t-test results

Variable 1 Variable 2

Mean 28543.67 30974.96

Variance 423585.90 95591.56

Observations 3 2

Hypothesised Mean Difference 1

df 3

t Stat -5.594920

P(T=t) one-tail 0.005639

t Critical one-tail 2.353363

P(T=t) two-tail 0.011279

t Critical two-tail 3.182446



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

19

4.5. Other Factors
The previous subsections clearly demonstrated that, when analysing the aggregated average energy 
consumption, GraalVM and its native image use less power than classic JVM distributions. In this 
sub-section, to further support this conclusion, sub-factors such as aggregated CPU, aggregated 
monitor, aggregate disk, aggregated base, and aggregated application energy consumed when executing 
benchmark tests are also considered. The following tables (Table 16-23) and figures (Figure 16 -31) 
for each benchmark test’s power consumption components follow the same pattern as aggregated 
average energy consumption statistics. In terms of total hardware energy and aggregated application 

Table 14. Page rank t-test results

Variable 1 Variable 2

Mean 10656.23 9937.36

Variance 209127.10 24093.18

Observations 3 2

Hypothesised Mean Difference 1

Df 3

t Stat 2.510635

P(T=t) one-tail 0.043445

t Critical one-tail 2.353363

P(T=t) two-tail 0.086889

t Critical two-tail 3.182446

Figure 14. Comparison of total program execution time in seconds



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

20

power consumption, GraalVM 21.3.1 and its native image are the least energy consumption candidates 
among five JVM distributions in ALS, Chi-square, Decision Tree, Logistic Regression, Movie Lens, 
and Page Rank test cases. However, similar to the aggregated average energy consumption statistics 

Table 16. Energy consumption in detail for ALS benchmark test by components

JVM 
Distribution

Aggregated Average Hardware Energy 
Consumption (KJ)

Aggregated 
Application 

(KJ)

Aggregated 
Total Time 

(s)

Aggregated 
Energy 

Consumption 
(KJ)

Aggregated 
Energy 

Consumption 
(J/s)CPU 

(KJ)
Monitor 

(KJ)
Disk 
(KJ)

Base 
(KJ)

Total 
Hardware 

Energy (KJ)

OpenJDK 11.0.12 7330.90 3500.40 62.87 5250.60 16144.78 6999.32 1346.26 23144.10 17191.43

Amazon Corretto 
11.0.14.1

5705.84 2744.33 49.27 4116.49 12615.93 5433.63 1192.59 18049.57 15134.75

Zulu 11.0.14 5211.12 2488.81 40.62 3733.22 11473.77 4998.82 1135.50 16472.59 14506.91

GraalVM 21.3.1 
(build 11.0.14)

5134.83 2442.69 41.20 3664.03 11282.74 4866.34 1125.23 16149.08 14351.81

GraalVM 21.3.1 
(build 11.0.14) 
Native Image

5143.56 2460.85 45.89 3691.28 11341.58 4866.70 1129.64 16208.28 14348.20

Table 17. Energy consumption in detail for chi-square benchmark test by components

JVM Distribution Aggregated Average Hardware Energy 
Consumption (KJ)

Aggregated 
Application 

(KJ)

Aggregated 
Total Time 

(s)

Aggregated 
Energy 

Consumption 
(KJ)

Aggregated 
Energy 

Consumption 
(J/s)CPU 

(KJ)
Monitor 

(KJ)
Disk 
(KJ)

Base 
(KJ)

Total 
Hardware 

Energy (KJ)

OpenJDK 11.0.12 200.71 177.68 3.83 266.52 648.74 172.73 302.30 821.47 2717.43

Amazon Corretto 
11.0.14.1

161.84 146.01 3.43 218.65 529.93 139.15 272.96 669.08 2451.18

Zulu 11.0.14 177.38 161.23 3.59 241.84 584.05 152.32 288.14 736.37 2555.63

GraalVM 21.3.1 
(build 11.0.14)

154.20 134.66 3.26 201.99 494.11 128.90 263.17 623.01 2367.38

GraalVM 21.3.1 
(build 11.0.14) 
Native Image

144.95 126.41 3.18 189.62 464.16 121.62 255.58 585.77 2291.95

Table 15. Energy consumption ranking table

JVM Distributions Individual Aggregated Average Energy Consumption Ranking Average Overall 
RankingALS Chi-

square
Decision 

Tree
Gauss-

mix
Log 

Regression
Movie 
Lens

Naive 
Bayes

Page 
Rank

OpenJDK 11.0.12 5 5 5 5 5 5 3 5 4.75 5

Amazon Corretto 
11.0.14

4 3 4 1 4 4 2 4 3.25 4

Zulu 11.0.14 3 4 3 2 3 3 1 3 2.75 3

GraalVM 21.3.1 
(build 11.0.14)

2 2 2 4 2 1 5 1 2.38 2

GraalVM 21.3.1 
(build 11.0.14) 
Native Image

1 1 1 3 1 2 4 2 1.88 1



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

21

and performance results, they performed poorly in Naive Bayes and Gaussian Mixture test cases with 
high total hardware energy and aggregated application consumption.

4.6. Carbon Equivalent Footprint Analysis
The carbon equivalent emissions statistical analyses in this paper are computed based on the aggregated 
total energy consumption in each benchmark test. Using GHG conversion factors for electricity in 
the UK as a reference, four types of emission metrics were considered: kgCO2e/kWh, kgCO2/kWh, 
kgCH4/kWh, and kgN2O/kWh (Department for Business, Energy & Industrial Strategy, 2021). Table 
24 below presents calculated data for all these constructs. To reiterate, the aggregated total energy 

Table 18. Energy consumption in detail for decision tree test case by components

JVM Distribution Aggregated Average Hardware Energy 
Consumption (KJ)

Aggregated 
Application 

(KJ)

Aggregated 
Total Time 

(s)

Aggregated 
Energy 

Consumption 
(KJ)

Aggregated 
Energy 

Consumption 
(J/s)CPU 

(KJ)
Monitor 

(KJ)
Disk 
(KJ)

Base 
(KJ)

Total 
Hardware 

Energy (KJ)

OpenJDK 11.0.12 143.53 113.19 2.74 169.78 429.24 134.15 241.84 563.39 2329.65

Amazon Corretto 
11.0.14.1

134.69 106.55 2.71 159.82 403.77 125.55 234.62 529.32 2256.14

Zulu 11.0.14 128.78 104.65 2.74 156.97 393.14 121.84 232.50 514.98 2214.98

GraalVM 21.3.1 
(build 11.0.14)

111.83 92.06 2.54 138.09 344.53 102.93 218.14 447.46 2051.26

GraalVM 21.3.1 
(build 11.0.14) 
Native Image

110.22 92.02 2.53 138.04 342.81 101.69 217.99 444.50 2039.06

Figure 15. A comparison on aggregated average energy Consumption



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

22

consumption is the input for the relevant carbon equivalent computation. In most cases (except 
Gauss Mix and Naïve Bayes), GraalVM-based benchmark tests emitted the lowest amount of carbon 
equivalent into the environment.

Table 19. Energy consumption in detail for gaussian mixture test case by components

JVM Distribution Aggregated Average Hardware Energy 
Consumption (KJ)

Aggregated 
Application 

(KJ)

Aggregated 
Total Time 

(s)

Aggregated 
Energy 

Consumption 
(KJ)

Aggregated 
Energy 

Consumption 
(J/s)CPU 

(KJ)
Monitor 

(KJ)
Disk 
(KJ)

Base 
(KJ)

Total 
Hardware 

Energy (KJ)

OpenJDK 11.0.12 126.56 130.01 2.4 195.02 454.00 111.33 258.77 565.33 2184.67

Amazon Corretto 
11.0.14.1

100.15 109.07 2.08 163.61 374.90 92.96 236.97 467.87 1974.39

Zulu 11.0.14 105.35 113.82 2.19 170.73 392.09 96.69 241.84 488.78 2021.06

GraalVM 21.3.1 
(build 11.0.14)

116.37 127.00 2.58 190.50 436.45 105.70 255.85 542.16 2119.02

GraalVM 21.3.1 
(build 11.0.14) 
Native Image

112.72 121.71 2.79 182.56 419.77 100.94 250.40 520.71 2079.51

Table 20. Energy consumption in detail for logistic regression test case by components

JVM Distribution Aggregated Average Hardware Energy 
Consumption (KJ)

Aggregated 
Application 

(KJ)

Aggregated 
Total Time 

(s)

Aggregated 
Energy 

Consumption 
(KJ)

Aggregated 
Energy 

Consumption 
(J/s)CPU 

(KJ)
Monitor 

(KJ)
Disk 
(KJ)

Base 
(KJ)

Total 
Hardware 

Energy (KJ)

OpenJDK 11.0.12 139.23 88.79 1.91 133.18 363.11 127.51 213.14 490.62 2301.90

Amazon Corretto 
11.0.14.1

132.21 71.84 2.40 107.77 314.22 119.67 193.11 433.89 2246.82

Zulu 11.0.14 129.00 70.97 2.03 106.45 308.46 117.92 191.76 426.38 2223.55

GraalVM 21.3.1 
(build 11.0.14)

123.25 67.17 1.36 100.76 292.54 111.96 186.53 404.51 2168.60

GraalVM 21.3.1 
(build 11.0.14) 
Native Image

122.05 67.22 1.59 100.82 291.68 112.66 186.71 404.34 2165.58

Table 21. Energy consumption in detail for movie lens test case by components

JVM Distribution Aggregated Average Hardware Energy 
Consumption (KJ)

Aggregated 
Application 

(KJ)

Aggregated 
Total Time 

(s)

Aggregated 
Energy 

Consumption 
(KJ)

Aggregated 
Energy 

Consumption 
(J/s)CPU 

(KJ)
Monitor 

(KJ)
Disk 
(KJ)

Base 
(KJ)

Total 
Hardware 

Energy (KJ)

OpenJDK 11.0.12 6417.36 3463.43 20.38 5195.15 15096.32 6121.87 1336.61 21218.19 15874.61

Amazon Corretto 
11.0.14.1

5281.71 2970.32 17.07 4455.48 12724.56 5009.20 1237.31 17733.79 14332.56

Zulu 11.0.14 5285.95 2968.58 35.31 4452.86 12742.70 4899.38 1237.87 17642.08 14251.94

GraalVM 21.3.1 
(build 11.0.14)

4823.10 2745.20 19.10 4117.80 11705.20 4566.29 1189.21 16271.49 13682.63

GraalVM 21.3.1 
(build 11.0.14) 
Native Image

4822.33 2709.09 18.02 4063.63 11613.07 4570.47 1182.09 16183.54 13690.66



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

23

5. CONCLUSION AND RECOMMENDATIONS

Overall, this study has clearly demonstrated that, in most cases, GraalVM-based Java 11 applications 
provide better performance, consume less energy, and emit less carbon equivalent footprint than those 
utilising OpenJDK and two other popular JVM distributions in the market (Amazon Corretto and 
Zulu). In terms of energy efficiency, this result supports Ournani’s research outcome, which indicated 
that GraalVM had the highest energy efficiency for most benchmarks (Ournani et al., 2021).

To achieve these results, eight Apache Spark benchmark tests from the Renaissance benchmark 
suite have been chosen for analysing three classic JVM distribution candidates and two GraalVM-
based distribution candidates. Each test was conducted five times to ensure fairness and consistency 
of the experiments.

Although the outcomes of the test groups are not significantly different, in the long term 
GraalVM would still add technology-related value to SMEs in terms of reduced monthly electricity 
bills and carbon equivalent footprint emissions while maximising business profits (as a results of 
such technological acceptance). For GraalVM’s founders and contributors, their products reveal 
weakness in specific benchmark tests such as Naive Bayes and Gaussian Mixture Model, with poor 
performance, high energy consumption, and high carbon equivalent emissions. Therefore, some work 
is still needed to enable GraalVM categorically outperform other JVM choices.

Table 22. Energy consumption in detail for Naive Bayes test case by components

JVM 
Distribution

Aggregated Average Hardware Energy 
Consumption (KJ)

Aggregated 
Application 

(KJ)

Aggregated 
Total Time 

(s)

Aggregated 
Energy 

Consumption 
(KJ)

Aggregated 
Energy 

Consumption 
(J/s)CPU 

(KJ)
Monitor 

(KJ)
Disk 
(KJ)

Base 
(KJ)

Total 
Hardware 

Energy 
(KJ)

OpenJDK 11.0.12 21004.53 8315.54 123.78 12473.32 41917.17 19216.69 2092.98 61133.86 29208.98

Amazon Corretto 
11.0.14.1

20072.74 7999.36 168.78 11999.04 40239.92 18286.48 2052.57 58526.40 28513.69

Zulu 11.0.14 19207.79 7678.28 120.07 11517.42 38523.57 17640.88 2012.46 56164.45 27908.34

GraalVM 21.3.1 
(build 11.0.14)

23941.84 9523.88 138.06 14285.82 47889.59 21907.66 2237.55 69797.26 31193.58

GraalVM 21.3.1 
(build 11.0.14) 
Native Image

23192.35 9263.21 129.28 13894.81 46479.66 21393.61 2206.81 67873.26 30756.33

Table 23. Energy consumption in detail for page rank test case by components

JVM Distribution Aggregated Average Hardware Energy 
Consumption (KJ)

Aggregated 
Application 

(KJ)

Aggregated 
Total Time 

(s)

Aggregated 
Energy 

Consumption 
(KJ)

Aggregated 
Energy 

Consumption 
(J/s)CPU 

(KJ)
Monitor 

(KJ)
Disk 
(KJ)

Base 
(KJ)

Total 
Hardware 

Energy (KJ)

OpenJDK 11.0.12 3222.08 1789.95 23.72 2684.93 7720.67 2907.78 961.76 10628.45 11051.08

Amazon Corretto 
11.0.14.1

3058.59 1714.52 20.59 2571.78 7365.49 2759.88 940.81 10125.37 10762.44

Zulu 11.0.14 2745.79 1598.57 17.25 2397.86 6759.48 2462.19 908.08 9221.66 10155.16

GraalVM 21.3.1 
(build 11.0.14)

2549.51 1448.05 19.32 2172.07 6188.94 2305.03 864.30 8493.97 9827.60

GraalVM 21.3.1 
(build 11.0.14) 
Native Image

2659.90 1485.13 20.07 2227.70 6392.81 2402.71 875.43 8795.52 10047.12



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

24

Due to hardware and software limitations, this research was conducted in a non-dedicated 
environment. Thus, external factors could have interfered with the final results, such as phantom 
processes within the WSL2 environment, or CPU usage from other Windows background processes. 
For this reason, future work can utilize a more specialised environment with more advanced tools 
to measure performance, energy consumption, and carbon equivalent footprint emissions of the 

Table 24. Carbon equivalent footprint statistics for all test cases

Test Case Aggregated 
Total Energy 
Consumption 
(KJ)

Aggregated 
Total Energy 
Consumption 
(kWh)

Carbon 
Emission 
(kgCO2e/
kWh)

Carbon 
Emission 
(kgCO2/
kWh)

Carbon 
Emission 
(kgCH4/
kWh)

Carbon 
Emission 
(kgN2O/
kWh)

OpenJDK 11.0.12 ALS 
Amazon Corretto 11.0.14.1 ALS Zulu 
11.0.14 ALS 
GraalVM 21.3.1 (build 11.0.14) ALS 
Native Image GraalVM 21.3.1
(build 11.0.14) ALS

23144.10 
18049.57 
16472.59 
16149.08
16208.28

6.428916589 
5.013768075 
4.575718169 
4.485856692
4.502301192

1.365051859 
1.064573375 
0.971562239 
0.952481951
0.955973612

1.351101110 
1.053693499 
0.961632930 
0.942747642
0.946203619

0.005143133 
0.004011014 
0.003660575 
0.003588685
0.003601841

0.008807616 
0.006868862 
0.006268734 
0.006145624
0.006168153

OpenJDK 11.0.12 Chi-square 
Amazon Corretto 11.0.14.1 Chi-square 
Zulu 11.0.14 Chi-square 
GraalVM 21.3.1 (build 11.0.14) Chi-
square Native Image GraalVM 21.3.1
(build 11.0.14) Chi-square

821.47 
669.08 
736.37 
623.01
585.77

0.228185429 
0.185855355 
0.204548048 
0.173058532
0.162715216

0.048450612 
0.039462668 
0.043431687 
0.036745518
0.034549322

0.047955450 
0.039059361 
0.042987818 
0.036369981
0.034196230

0.000182548 
0.000148684 
0.000163638 
0.000138447
0.000130172

0.000312614 
0.000254622 
0.000280231 
0.000237090
0.000222920

OpenJDK 11.0.12 Decision Tree 
Amazon Corretto 11.0.14.1 Decision Tree 
Zulu 11.0.14 Decision Tree 
GraalVM 21.3.1 (build 11.0.14) 
Decision Tree Native Image GraalVM 
21.3.1
(build 11.0.14) Decision Tree

563.39 
529.32 
514.98 
447.46
444.50

0.156498235 
0.147034604 
0.143050492 
0.124294081
0.123472173

0.033229270 
0.031219857 
0.030373911 
0.026391362
0.026216847

0.032889669 
0.030900792 
0.030063491 
0.026121644
0.025948912

0.000125199 
0.000117628 
0.000114440 
0.000099440
0.000098780

0.000214403 
0.000201437 
0.000195979 
0.000170283
0.000169157

OpenJDK 11.0.12 Gauss Mix 
Amazon Corretto 11.0.14.1 Gauss Mix 
Zulu 11.0.14 Gauss Mix
GraalVM 21.3.1 (build 11.0.14) Gauss 
Mix Native Image GraalVM 21.3.1 
(build 11.0.14) Gauss Mix

565.33 
467.87
488.78
542.16 
520.71

0.157035603 
0.129963077
0.135771513
0.150599178 
0.144641642

0.033343370 
0.027595060
0.028828365
0.031976724 
0.030711760

0.033002602 
0.027313040
0.028533741
0.031649923 
0.030397887

0.000125628 
0.000103970
0.000108617
0.000120479 
0.000115713

0.000215139 
0.000178049
0.000186007
0.000206321 
0.000198159

OpenJDK 11.0.12 Log Regression 
Amazon Corretto 11.0.14.1 Log 
Regression Zulu 11.0.14 Log Regression 
GraalVM 21.3.1 (build 11.0.14) Log 
Regression Native Image GraalVM 
21.3.1
(build 11.0.14) Log Regression

490.62 
433.89 
426.38 
404.51
404.34

0.136282184 
0.120524361 
0.118437944 
0.112363637
0.112315420

0.028936796 
0.025590938 
0.025147929 
0.023858171
0.023847933

0.028641064 
0.025329400 
0.024890918 
0.023614342
0.023604209

0.000109026 
0.000096420 
0.000094750 
0.000089890
0.000089850

0.000186707 
0.000165118 
0.000162260 
0.000153938
0.000153872

OpenJDK 11.0.12 Movie Lens 
Amazon Corretto 11.0.14.1 Movie Lens 
Zulu 11.0.14 Movie Lens 
GraalVM 21.3.1 (build 11.0.14) Movie 
Lens Native Image GraalVM 21.3.1
(build 11.0.14) Movie Lens

21218.19 
17733.79 
17642.08 
16271.49
16183.54

5.893941545 
4.926054004 
4.900576426 
4.519859026
4.495427734

1.251460608 
1.045949047 
1.040539392 
0.959701667
0.954514171

1.238670755 
1.035259509 
1.029905142 
0.949893573
0.944759093

0.004715153 
0.003940843 
0.003920461 
0.003615887
0.003596342

0.008074700 
0.006748694 
0.006713790 
0.006192207
0.006158736

OpenJDK 11.0.12 Naive Bayes 
Amazon Corretto 11.0.14.1 Naive Bayes 
Zulu 11.0.14 Naive Bayes
GraalVM 21.3.1 (build 11.0.14) Naive 
Bayes Native Image GraalVM 21.3.1 
(build 11.0.14) Naive Bayes

61133.86 
58526.40
56164.45
69797.26 
67873.26

16.98162829 
16.25733415
15.60123658
19.38812666 
18.853684300

3.605709135 
3.451919760
3.312610562
4.116680934 
4.003202787

3.568859002 
3.416641345
3.278755879
4.074608700 
3.962290292

0.013585303 
0.013005867
0.012480989
0.015510501 
0.015082947

0.023264831 
0.022272548
0.021373694
0.026561734 
0.025829547

OpenJDK 11.0.12 Page Rank 
Amazon Corretto 11.0.14.1 Page Rank 
Zulu 11.0.14 Page Rank 
GraalVM 21.3.1 (build 11.0.14) Page 
Rank Native Image GraalVM 21.3.1
(build 11.0.14) Page Rank

10628.45 
10125.37 
9221.66 
8493.97
8795.52

2.952346927 
2.812602721 
2.561571577 
2.359435893
2.443199686

0.626871823 
0.597199936 
0.543898493 
0.500979023
0.518764589

0.620465230 
0.591096588 
0.538339883 
0.495859047
0.513462846

0.002361878 
0.002250082 
0.002049257 
0.001887549
0.001954560

0.004044715 
0.003853266 
0.003509353 
0.003232427
0.003347184



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

25

Figure 16. Total hardware and application energy consumption of ALS

Figure 17. Comparison of hardware energy consumption on ALS

Figure 18. Total hardware and application energy consumption of chi-square



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

26

Figure 19. A Comparison of hardware energy consumption on chi-square

Figure 20. Total hardware and application energy consumption of decision tree

Figure 21. Comparison of hardware energy consumption on decision tree



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

27

Figure 22. Total hardware and application energy consumption of Gaussian mixture

Figure 23. A comparison of hardware energy consumption on Gaussian mixture

Figure 24. Total hardware and application energy consumption of log regression



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

28

Figure 25. A comparison of hardware energy consumption on log regression

Figure 26. Total hardware and application energy consumption of movie lens

Figure 27. A Comparison of hardware energy consumption on movie lens



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

29

Figure 28. Total hardware and application energy consumption of Naïve Bayes

Figure 29. Comparison of hardware energy consumption on Naïve Bayes

Figure 30. Total hardware and application energy consumption of page rank



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

30

programs. Moreover, future work can also focus on other performance factors of the JVM such as 
VM startup time, heap size, and stack size to provide better optimizations for all JVM distributions.

ACKNOWLEDGEMENT

This research and the APC are funded by European Commission grant number 610619-EPP-1-2019-
1-FR- EPPKA1-JMD-MOB (EMJMD Genial Project).

Figure 31. Comparison of hardware energy consumption on page rank



International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

31

REFERENCES

Arushanyan, Y., Ekener-Petersen, E., & Finnveden, G. (2014). Lessons learned – Review of LCAs for ICT 
products and services. Computers in Industry, 65(2), 211–234. doi:10.1016/j.compind.2013.10.003

Avom, D., Nkengfack, H., Fotio, H. K., & Totouom, A. (2020). ICT and environmental quality in sub-Saharan 
Africa: Effects and transmission channels. Technological Forecasting and Social Change, 155, 120028. 
doi:10.1016/j.techfore.2020.120028

Bastida, L., Cohen, J. J., Kollmann, A., Moya, A., & Reichl, J. (2019). Exploring the role of ICT on household 
behavioural energy efficiency to mitigate global warming. Renewable & Sustainable Energy Reviews, 103, 
455–462. doi:10.1016/j.rser.2019.01.004

Bourdon, A., Noureddine, A., Rouvoy, R., & Seinturier, L. (2013). PowerAPI: A Software Library to Monitor 
the Energy Consumed at the Process-Level. ERCIM News, 2013(92).

Deitel, H., & Deitel, P. (2020). Java how to program (late objects) (11th edition). Pearson UK.

Department for Business. Energy & Industrial Strategy. (2021). Greenhouse Gas Reporting: Conversion Factors 
2021. Gov.uk. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2021/

Ergasheva, S., Khomyakov, I., Kruglov, A., & Succil, G. (2020). Metrics of energy consumption in software 
systems: A systematic literature review. IOP Conference Series. Earth and Environmental Science, 431(1), 
012051. Advance online publication. doi:10.1088/1755-1315/431/1/012051

Evans, B. (2015). Java, the legend: Past, present, and future. O’Reilly Media.

Floyer, D. (2020). Java for mid-sized enterprises: On-premises & in the cloud. Oracle.com. https://www.oracle.
com/de/a/ocom/resources/java_for_mid-size_enterprises.pdf

GeeksForGeeks. (2019). Disadvantages of Java language. Geeks for Geeks.com. https://www.geeksforgeeks.
org/disadvantages-of-java-language/

Gilliard, M. (2020). Using SDKMAN! to work with multiple versions of Java. Twilio.com. https://www.twilio.
com/blog/sdkman-work-with-multiple-versions-java

Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A., & Smith, D. (2018). The Java language specification: 
Java SE (11th edition). Addison-Wesley Professional.

Graalvm.org. (n. d.). GraalVM architecture overview. https://www.graalvm.org/22.0/docs/introduction/

Houghton, J. (2009). ICT and the environment in developing countries: An overview of opportunities and 
developments. Communications & Stratégies, 1, 39–60.

Ikedilo, O., Osisikankwu, P., & Madubuike, C. (2015). A critical evaluation of Java as a good choice for 
introductory course. International Journal of Research, 2(12), 847–853.

ITU-T, International Telecommunication Union. (2012). Methodology for the assessment of the environmental 
impact of information and communication technology goods, networks and services. https://www.itu.int/rec/T-
REC-L.1410

Kansal, A., Zhao, F., Liu, J., Kothari, N., & Bhattacharya, A. (2009). Joulemeter: Virtual machine power 
measurement and management. https://www.microsoft.com/en-us/research/publication/joulemeter-virtual-
machine-power-measurement-and-management/

Kor, A. L., Pattinson, C., Imam, I., AlSaleemi, I., & Omotosho, O. (2015). Applications, energy consumption, 
and measurement. In 2015 International Conference on Information and Digital Technologies, (pp. 161-171). 
IEEE. doi:10.1109/DT.2015.7222967

Kumar, A. (2021a). Supercharge your applications with GraalVM: Hands-on examples to optimize and extend 
your code using GraalVM’s high performance and polyglot capabilities. Packt Publishing.

Kumar, A. (2021b). GraalVM — Episode 2: The Holy Grail. Faun.pub. https://faun.pub/episode-2-the-holy-
grail-graalvm-building-super-optimum-microservices-architecture-series-c068b72735a1

http://dx.doi.org/10.1016/j.compind.2013.10.003
http://dx.doi.org/10.1016/j.techfore.2020.120028
http://dx.doi.org/10.1016/j.rser.2019.01.004
https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2021/
http://dx.doi.org/10.1088/1755-1315/431/1/012051
https://www.oracle.com/de/a/ocom/resources/java_for_mid-size_enterprises.pdf
https://www.oracle.com/de/a/ocom/resources/java_for_mid-size_enterprises.pdf
https://www.geeksforgeeks.org/disadvantages-of-java-language/
https://www.geeksforgeeks.org/disadvantages-of-java-language/
https://www.twilio.com/blog/sdkman-work-with-multiple-versions-java
https://www.twilio.com/blog/sdkman-work-with-multiple-versions-java
https://www.graalvm.org/22.0/docs/introduction/
https://www.itu.int/rec/T-REC-L.1410
https://www.itu.int/rec/T-REC-L.1410
https://www.microsoft.com/en-us/research/publication/joulemeter-virtual-machine-power-measurement-and-management/
https://www.microsoft.com/en-us/research/publication/joulemeter-virtual-machine-power-measurement-and-management/
http://dx.doi.org/10.1109/DT.2015.7222967
https://faun.pub/episode-2-the-holy-grail-graalvm-building-super-optimum-microservices-architecture-series-c068b72735a1
https://faun.pub/episode-2-the-holy-grail-graalvm-building-super-optimum-microservices-architecture-series-c068b72735a1


International Journal of Environmental Sustainability and Green Technologies
Volume 14 • Issue 1

32

Lestal, J. (2020, August 5). History of programming languages. DevSkiller.com. https://devskiller.com/history-
of-programming-languages/

Long, D. (2017). Programming languages’ milestones: An overview from 1960 - present (the last part). Viblo.
asia. https://viblo.asia/p/programming-languages-milestones-an-overview-from-1960-present-the-last-part-
924lJr7XlPM

Mahdavi, S., & Sojoodi, S. (2021). Impact of ICT on environment. 10.21203/rs.3.rs-1020622/v1

Morales, A. (2019). Meet the team that built GraalVM, an energy-saving multilingual compiler written entirely 
in Java. Forbes.com. https://www.forbes.com/sites/oracle/2019/05/08/meet-the-team-that-built-graalvm-an-
energy-saving-multilingual-compiler-written-entirely-in-java/?sh=1a4425784ee6

Noureddine, A., Rouvoy, R., & Seinturier, L. (2013). A review of energy measurement approaches. Operating 
Systems Review, 47(3), 42–49. doi:10.1145/2553070.2553077

Ournani, Z., Belgaid, M. C., Rouvoy, R., Rust, P., & Penhoat, J. (2021). Evaluating the impact of Java virtual 
machines on energy consumption. In Proceedings of the 15th ACM/IEEE International Symposium on Empirical 
Software Engineering and Measurement (ESEM) (pp. 1-11). IEEE. doi:10.1145/3475716.3475774

Prokopec, A., Rosà, A., Leopoldseder, D., Duboscq, G., Tuþma, P., Studener, M., Bulej, L., Zheng, Y., Villazón, 
A., Simon, D., Wu¨rthinger, T., & Binder, W. (2019). Renaissance: Benchmarking suite for parallel applications 
on the JVM. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and 
Implementation (pp. 31-47). IEEE. doi:10.1145/3314221.3314637

Renaissance. (n. d.). Renaissance-benchmarks/renaissance: The Renaissance benchmark suite Architecture 
Overview. Github.com. https://github.com/renaissance-benchmarks/renaissance

Sehgal, R., Mehrotra, D., Nagpal, R., & Sharma, R. (2022). Green software: Refactoring approach. Journal of 
King Saud University - Computer and Information Sciences, 34(7), 4635-4643. 10.1016/j.jksuci.2020.10.022

Singh, B., & Gupta, G. (2019). Analyzing windows subsystem for Linux metadata to detect timestamp forgery, 
159-182.

Sipek, M., Muharemagic, D., Mihaljevic, B., & Radovan, A. (2020). Enhancing performance of cloud-
based software applications with GraalVM and Quarkus. In 2020 43rd International Convention on 
Information, Communication and Electronic Technology (MIPRO) (pp. 1746-1751). IEEE. doi:10.23919/
MIPRO48935.2020.9245290

Stephens, A., & Didden, M. (2013). The development of ICT sector guidance: Rationale, development and 
outcomes. In ICT4S 2013: Proceedings of the First International Conference on Information and Communication 
Technologies for Sustainability, ETH Zurich, (pp. 8-11).

TIOBE Software. (2023). TIOBE index for February 2023. https://www.tiobe.com/tiobe-index/

United Nations. (2021). Technology and innovation report 2021: United Nations Conference on Trade and 
Development (UNCTAD) Technology and Innovation Report (TIR). UN. https://www.un-ilibrary.org/content/
books/9789210056588

Vermeer, B. (2020). JVM ecosystem report 2020. Snyk.io. https://snyk.io/wp-content/uploads/jvm_2020.pdf

Thalita Vergilio is a Senior Lecturer and independent researcher at Leeds Beckett University. With a strong industry 
background of over 10 years in software engineering, her research interests include stream big data frameworks, 
containers and container orchestration technology, web development best practices, systems architecture, and 
DevOps practices.

Long is a sponsored graduate of the Erasmus Mundus Joint Master’s Program GENIAL. With a solid background 
of over five years in Information Technology and Software Engineering, Long is interested in big data processing, 
high throughput distributed systems, container technologies and cloud computing.

Ah-Lian Kor is a Professor in Sustainable and Intelligent Computing at Leeds Beckett University. She has been 
involved in several EU projects for Green Computing, Innovative Training Model for Social Enterprises Professional 
Qualifications, and Integrated System for Learning and Education Services. She has published work on Ontology, 
Semantics Web, Web Services, Portal and semantics for GIS.

https://devskiller.com/history-of-programming-languages/
https://devskiller.com/history-of-programming-languages/
https://viblo.asia/p/programming-languages-milestones-an-overview-from-1960-present-the-last-part-924lJr7XlPM
https://viblo.asia/p/programming-languages-milestones-an-overview-from-1960-present-the-last-part-924lJr7XlPM
https://www.forbes.com/sites/oracle/2019/05/08/meet-the-team-that-built-graalvm-an-energy-saving-multilingual-compiler-written-entirely-in-java/?sh=1a4425784ee6
https://www.forbes.com/sites/oracle/2019/05/08/meet-the-team-that-built-graalvm-an-energy-saving-multilingual-compiler-written-entirely-in-java/?sh=1a4425784ee6
http://dx.doi.org/10.1145/2553070.2553077
http://dx.doi.org/10.1145/3475716.3475774
http://dx.doi.org/10.1145/3314221.3314637
https://github.com/renaissance-benchmarks/renaissance
http://dx.doi.org/10.23919/MIPRO48935.2020.9245290
http://dx.doi.org/10.23919/MIPRO48935.2020.9245290
https://www.tiobe.com/tiobe-index/

