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ABSTRACT

On a Winkler foundation, solid circular plate vibration is examined using a higher-order finite element 
in polar co-ordinate system. The present formulation has developed a Mat-lab code to handle any 
boundary conditions. Validation of the code is carried out after the convergence studies. The results 
are compared to other researchers and show excellent conformity. Furthermore, a parametric analysis 
gave the first 10 natural frequency characteristics in tabular and graphical form. The authors conclude 
that the present formulation is straightforward, behaves exceptionally well for thin solid circular plates 
on elastic foundations with reasonable convergence rate and accuracy, and requires less computational 
effort, resources, and time.
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INTRODUCTION

Due to their wide range of applications in civil, structural, aeronautical, and mechanical engineering, 
such as highways, buried pipelines, airport runways, water tanks, and railway tracks, vibration analysis 
of solid circular plates on elastic foundations has attracted a lot of attention. These constructions 
provide significant soil-structure interaction issues, and it is difficult to determine how dynamic 
vertical or horizontal forces are transmitted to the foundation. Therefore, structures of different shapes, 
materials, and models, such as beams, plates, and shells, are frequently employed. Many engineering 
problems, including highway pavements, bridges, ships, steel bearing plates on concrete, etc., can 
be simplified into beams, plates, and shells on elastic foundations. Therefore, a thorough study of 
solid circular plates on Winkler foundations is required. Although this problem may be solved using 
most finite element programmes, analytical methods have several advantages for comprehending the 
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fundamental concepts of physics and mechanics. The interaction between structures and complex 
media has been extensively studied, leading to the development of numerous theoretical frameworks 
for structures with elastic foundations. However, a theoretical approach cannot solve most of these 
problems, which leads to numerical techniques.

Numerous research has been carried out to predict the plate’s response to elastic foundations. A 
reasonably straightforward model by (Winkler, 1867) is predicated on the notion that each foundation 
point’s reaction forces per unit area correspond to the foundation’s deflection. (Celep, 1988; Celep 
and Turhan, 1990) have published their assessments of circular plates using the Winkler foundation 
model. Using the Galerkin technique to estimate plate deflection, (Guler and Celep, 1995a; Güler 
and Guler, 2004) stated a study of a thin circular elastic plate supporting both uniformly distributed 
and symmetrical stresses on a two-parameter Pasternak foundation. The study also considers the 
Pasternak foundation’s tensionless properties, allowing the plate to lift off the surface.

Circular plates have been investigated by simulating the foundation soil (Galletly, 1959) to create 
a more accurate foundation model to fix Winkler’s shortcomings. (Eisenberger and Clastornik, 1987a, 
1987b) presented and compared two methods for resolving the issues of static analysis, vibrations, 
and stability of beams on unstable two-parameter elastic foundations and a method for resolving the 
issues of beam buckling and vibrations on a variable Winkler elastic foundation. (Olson and Lindberg, 
1970) created two finite plate bending elements in a polar coordinates system. The first element has 
a sector that is nine degrees of freedom in a circle, whereas the second has a sector that is twelve 
degrees of freedom in an annulus. A continuum-based model was created by (Elhuni et al., 2019) 
to forecast the flexural behaviour of an elastic soil layer supporting a circular tank foundation. The 
authors present the coupling problem for the traditional theory of plates on an elastic axis-symmetric 
circular foundation by considering the soil-structure system’s horizontal and vertical displacement in 
the polar coordinate system. The issue of vibrations of circular plates resting on a Winkler foundation 
and elastically constrained against rotation and translation is addressed (Rao and Rao, 2013). (Narita, 
1985) investigated free elliptical plates comprehensively using the Ritz approach. The trial functions 
were performed using power series. There were multiple elliptical plates with different ellipticities, 
and the first five frequency parameters were presented for each. (Kim and Dickinson, 1989) presented 
approximate natural frequencies and frequency characteristics for fully clamped and simply supported 
circular plates for completely free circular plates. (Gupta and Bhardwaj, 2004) investigated how 
the combination of an elastic foundation and a parabolic thickness variation affected the vibration 
of elliptical plates. Their study looked at the frequency and mode shapes of the first four vibration 
modes for different aspect ratios, taper, orthotropic, and foundation parameter values for free plates, 
simply supported edges and clamped edges.

The governing equations of an elastic circular plate on a tensionless foundation are obtained 
and numerically solved in (Guler and Celep, 1995b) to investigate the impact of the foundation’s 
tensionless nature on the foundation and the plate’s static and dynamic behaviours. On the opening 
page of (Leissa, 1993)., the vibration of a plate supported laterally by an elastic foundation was 
explored. Leissa reasoned that a full (Winkler) foundation simply results in a continual increase in the 
plate’s squared natural frequency. (Salari et al., 1987) also predicted this. (Laura et al., 1995) studied 
the vibration of a plate resting on an elastic foundation, in which a natural frequency connection is 
no longer valid. (Wang, 2005) studies have various goals. First, they’ll calculate exact frequency 
determinants to validate and extend Laura’s approximations for clamped and simply supported plates. 
Second, they analyze plates with free and moving edges. Past authors’ assumptions of a fundamental 
axisymmetric mode may be erroneous in certain instances. It shall be demonstrated. Using a variational 
formulation, (Ascione and Grimaldi, 1984) investigated unilateral frictionless contact between a 
circular plate and a Winkler foundation. Leissa (Leissa, 1993) provided one of the early treatments 
of this issue by tabulating data for the frequency parameter for four vibration modes of a circular 
plate that was simply supported and had changing rotational stiffness. A circular plate lying on the 
Winkler foundation underwent a significant deflection, which (Zheng and Zhou, 1988) examined. 
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The axisymmetric dynamic response of a circular plate on an elastic foundation was investigated 
by (Ghosh, 1997). Four nodded sixteen degrees of freedom factor was considered by (Bogner et al., 
1966) by adding one additional degree of freedom to every node.

With a higher-order displacement function taken into consideration, the analysis aims to establish 
an efficient method for determining the static response of a thin circular plate supported by elastic 
foundations. According to Kirchhoff’s theory, a rectangular element needs four degrees of freedom 
at the right angle corner and at least six degrees at each non-right angle corner for a second-order 
(C2) compatible type plate element (Krishnamoorthy, 1987).

The goal of this work is to find a simple method that requires little in the way of computational 
resources, time, or effort for the analysis of circular plates on elastic foundations.

This paper presents solid circular plates based on Kirchhoff’s theory resting on the Winkler 
foundation for free vibration analysis using a higher-order finite element method in a polar coordinate 
system. First, a Mat-lab (Inc., 2011) code is written. The first convergence study and validation of 
the suggested formulation are then conducted, and the findings demonstrate excellent conformity 
with other studies. Several numerical examples demonstrate the present formulation’s convergence 
rate, precision, and application for free vibration analysis of higher-order circular plates on winkler 
foundations. The present element’s performance, convergence rate, precision, and applicability are 
all outstanding without dealing with any difficulties.

Four-nodded, twelve-degrees-of-freedom element non-conformity is overcome by the present 
element. For Kirchhoff plates, this equation is straightforward, converges quickly, and works well. This 
element creates thin, solid circular and annular plates on an elastic foundation with a few elements. 
The present formulation reduces computing cost, time, and memory. The only input is the modulus 
of subgrade reaction to represent the elastic foundation.

METHODOLOGY

Winkler Model
Winkler introduced a very compact model in the literature, the Winkler foundation (Figure 1). The 
Winkler model was employed by practising engineers for routine work because of its simplicity. 
Reaction forces per unit area are assumed to be proportional to foundation deflection in this model. 
The subgrade reaction modulus, K (Hetenyi, 1950), is a set of equal, independent, discrete, linearly 
elastic springs that define the vertical deformation properties of the foundation. According to the 
Winkler model, q = Kw, where w, the vertical soil displacement at that location, is proportional to the 
contact pressure, and q describes the relationship between external pressure and foundation surface 
deflection. The soil’s “subgrade reaction modulus” is defined as the proportionality constant, K.

A possible representation of the field equation in the domain Ω can be written as

Figure 1. Winkler foundation
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as the flexural rigidity of the plate. E = the modulus of elasticity of the plate, h = thickness of the 
plate, ν = Poisson’s ratio. q = the applied distributed load, Ω = domain of the plate. Estimating the 
foundation parameter modulus of subgrade response can be found in Biot (1937), Bowles (1996), 
Galin (1943), Lenczner (1962), Terzaghi (1955), Vesić (1961), and Dutta et al. (2022, 2021).

Dynamic Equation of Plate on Winkler Foundation
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is the static equation of the plate on the Winkler foundation.
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It is the plate’s dynamic equation on the Winkler foundation. m - Mass per unit plate area = ρh, 
ρ - mass density of plate material and c - Damping constant.

Application of Thin Plate Theory with Annular Sector Element
Displacement variations of thin plate written as (Figure 2).
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For four nodded elements.
For the plane stress condition, the relationship between stresses and strain is given by,
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Where [D] is the plate rigidity matrix.

Characteristic Equation
Using the Hamilton principle (Petyt, 1990), plate-soil equations of motion for free vibration without 
damping are

Figure 2. Annular sector element
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Where w is the plate’s displacement and w
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stiffness and mass matrices of the plate-soil system. One can get (Hinton, 1988) the natural frequencies 
and vibrational mode by resolving the generalized Eigenvalue problems.

If a harmonic motion is assumed for free vibration analysis
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Finite Element Formulation
The four nodded annular plate bending (APB) components are depicted in Figure 3. Every node has 
four degrees of freedom. There are a total of sixteen degrees of freedom for this element. Bogner et 
al. (1966) designed this compatible element.

The plate’s length and subtended angles are r and β.
Nodes 1, 2, 3, and 4 in polar coordinate systems are (r1, 0), (r2, 0), (r2, β), (r1, β) respectively. 

Where a = r2 - r1.
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 nodal unknown.

The displacements function for this type of element assumed as follows

Figure 3. 4 APB element
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These equations show how bending stiffness can be expressed as a full four by four point Gauss-
Legendre quadrature.

The lateral displacement of an area ‘dA’ normal to the foundation for a structural member with 
a differential area ‘dA’ in contact with the foundation is given by w = [N]d. For example, in a linear 
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[N] is the same as the shape function matrix of the plate.
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RESULT AND DISCUSSION
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The following dimensionless parameters have been defined to make results comparison simpler.

1. 	 Plate on elastic foundation’s natural frequency for nth mode, τ ω
ρ

n n
a

h

D
� � ²= .

2. 	 Foundation parameter, Kw = Ka4/D;

Normal modes analysis without loads or constraints will have one translation and two rotation 
modes. The first three modes have zero or near-zero modal frequency. So, this is a rigid body motion 
with no vibration. For a free plate, we always use the fourth mode.

Convergence Study
A circular plate (a = 1 m, h = 0.01 m, ν = 0.30 and ρ = 7850 kg/m3) without a foundation is considered 
first for the convergence study for C, S.S. and F boundary conditions of the present study (P.S.), as 
well as a convergence study, is performed shown in Figures 4, 5, and 6. The mesh size of 10 × 60, 
i.e. the number of elements 600, is decided for a good result compared to 15 × 90, i.e. the number 
of elements 1350 of a 12 DOF element, which requires less time, resources, and computer memory. 
The results listed in Table 1 and compared with (Lam et al., 1992) show excellent agreement. Shows 
the proposed formulation’s rapid convergence and observed for simply supported and clamped plates 
converging from the reverse direction.

Table 1. Natural frequency parameter for C, S.S. plate for 1st mode and free (F) plate for 4th mode

Mesh Size No of Node
C S.S. F

τ1 τ1 τ4

3 × 20 61 9.5468 4.7219 5.4995

4 × 24 97 9.7850 4.7975 5.4339

6 × 36 217 9.9961 4.8641 5.3898

8 × 40 321 10.0827 4.8916 5.3754

10 × 60 601 10.1263 4.9055 5.3689

(Lam et al., 1992) 10.2160 4.9352 5.3583

Difference (%) 0.878 0.601 0.197

Figure 4. Frequency parameter vs. no. of node
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Validation
A circular plate (ν = 0.30) on Winkler foundation (Kw = 200, 500) is considered first to validate the 
present formulation. The results listed in Table 2, compared with those given in (Sharma and Shivani, 
2011), show excellent agreement.

Parametric Study
For parametric study of thin solid circular plate (ν = 0.25) the data has been taken as r/h =100, Kw 
= 0, 100, 200, 300, 400 and various boundary conditions. The parametric study results are presented 
in Table 3, and Figures 7–9 show the variation of the first ten frequency parameter. Table 4 shows 
the impact of plate material Poisson’s ratio on the natural frequency parameter.

Figure 5. Frequency parameter vs. no. of node

Figure 6. Frequency parameter vs. no. of node

Table 2. Comparison of natural frequency parameter for clamped (C) and simply supported (S.S.) solid circular plate

B.C Kw

τ1 τ2 τ3

(Sharma 
and Shivani, 

2011)
P.S. Difference 

(%)

(Sharma 
and Shivani, 

2011)
P.S. Difference 

(%)

(Sharma 
and Shivani, 
2011)

P.S. Difference 
(%)

C 200 17.4460 17.3938 0.299 42.2107 41.7236 1.154 90.2194 88.8485 1.520

S 200 14.9785 14.9688 0.065 32.9132 32.6286 0.865 75.4925 74.5017 1.312

C 500 24.5838 24.5467 0.151 45.6261 45.1758 0.987 91.8670 90.5210 1.465

S 500 22.8988 22.8925 0.028 37.1925 36.9408 0.677 77.4540 76.4886 1.246
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With an increase in sub-grade reaction, this frequency parameter has been observed to rise 
regardless of boundary conditions. With more edge constraints, this frequency parameter has been 
observed to rise. Higher edge constraints result in a plate with higher flexural rigidity and, thus, a 
higher frequency response. Table 4 demonstrates that Poisson’s ratio of plate material little impacts 
the natural frequency parameter.

CONCLUSION

The vibration of thin solid circular plates resting on the Winkler foundation has been studied using 
the higher-order finite element method in the current polar coordinate system. The process is 

Table 3. Natural frequency parameter of a solid circular plate

B.C. Kw τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10

C

0 10.1287 21.1922 21.1922 34.8237 34.8237 39.2683 50.9303 50.9303 60.5659 60.5659

100 14.2335 23.4331 23.4331 36.2310 36.2310 40.5216 51.9028 51.9028 61.3859 61.3859

200 17.3952 25.4776 25.4776 37.5857 37.5857 41.7373 52.8573 52.8573 62.1950 62.1950

300 20.0647 27.3698 27.3698 38.8933 38.8933 42.9185 53.7950 53.7950 62.9938 62.9938

400 22.4185 29.1395 29.1395 40.1583 40.1583 44.0681 54.7165 54.7165 63.7826 63.7826

S.S.

0 4.8321 13.8139 13.8139 25.5479 25.5479 29.3576 39.8727 39.8727 48.3007 48.3007

100 11.1063 17.0535 17.0535 27.4353 27.4353 31.0140 41.1075 41.1075 49.3250 49.3250

200 14.9449 19.7692 19.7692 29.2009 29.2009 32.5863 42.3064 42.3064 50.3285 50.3285

300 17.9819 22.1545 22.1545 30.8657 30.8657 34.0862 43.4722 43.4722 51.3123 51.3123

400 20.5754 24.3069 24.3069 32.4452 32.4452 35.5228 44.6075 44.6075 52.2777 52.2777

F

0 0.0071 0.0041 0.0046 5.5218 5.5218 8.8466 12.7648 12.7648 20.4085 20.4085

100 10.0000 10.0000 10.0000 11.4232 11.4232 13.3515 16.2155 16.2155 22.7267 22.7267

200 14.1421 14.1421 14.1421 15.1819 15.1819 16.6812 19.0510 19.0510 24.8295 24.8295

300 17.3205 17.3205 17.3205 18.1794 18.1794 19.4490 21.5161 21.5161 26.7676 26.7676

400 20.0000 20.0000 20.0000 20.7483 20.7483 21.8692 23.7264 23.7264 28.5746 28.5746

Figure 7. Frequency parameter vs. Kw for clamped plate
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straightforward and can determine frequencies and mode shapes close to the exact ones. Employing 
the higher-order finite element method in the polar coordinate system, the vibration of thin solid 
circular plates resting on the Winkler foundation, the first ten eigenvalues are tabulated for different 
boundary conditions and foundation parameters. The accuracy and efficacy of the proposed formulation 
for various foundation parameters and boundary conditions are confirmed by the results obtained 
from other studies. A parametric analysis is also carried out to clarify how different parameters 

Figure 8. Frequency parameter vs. Kw for simply supported plate

Figure 9. Frequency parameter vs. Kw for free plate

Table 4. Natural frequency parameter of a solid circular plate, Kw = 200

μₚ
Clamped Plate Simply Supported Plate

τ1 τ2 τ3 τ1 τ2 τ3

0.20 17.3965 41.7502 88.9116 14.9204 32.5430 74.4483

0.25 17.3952 41.7373 88.8812 14.9449 32.5863 74.4761

0.30 17.3938 42.7236 88.8485 14.9688 32.6286 74.5017

0.35 17.3923 41.7090 88.8136 14.9922 32.6698 74.5251
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affect the results. The higher-order finite elements for vibration analysis generate a highly accurate 
approximation solution for thin solid circular plates resting on the Winkler foundation, according to 
many numerical experiments, including varying support conditions.

The following conclusions are drawn from the numerical results reported in the previous section.

•	 The approach has a very rapid convergence and produces exceptionally accurate predictions.
•	 The numerical findings for solid circular plates and various support conditions will not only 

demonstrsate the usefulness of the present elements. Still, they will also be a handy reference 
for future researchers in this field and practitioners and design engineers due to their ease of 
formulation, ability to provide a very accurate approximation solution, cost-effectiveness and 
less time, resources, and computing effort required.

•	 The only input is the modulus of subgrade reaction to represent the elastic foundation.
•	 The findings of this investigation are consistent with accurate and numerical results published 

in the literature.
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