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ABSTRACT

In recent years, knowledge graph completion (KGC) has garnered significant attention. However, 
noise in the graph poses numerous challenges to the completion of tasks, including error propagation, 
missing information, and misleading relations. Many existing KGC methods utilize the multi-head 
self-attention mechanism (MHA) in transformers, which yields favorable results in low-dimensional 
space. Nevertheless, employing MHA introduces the risk of overfitting due to a large number 
of additional parameters, and the choice of model loss function is not comprehensive enough to 
capture the semantic discriminatory nature between entities and relationships and the treatment of 
RDF indicates that the dataset contains only positive (training) examples, and the error facts are not 
encoded, which tends to cause overgeneralization.
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INTRODUCTION

The landmark development of the Semantic Web can be traced back to the idea put forward by Berners-
Lee et al. that it is desirable to augment the original World Wide Web by treating the Semantic Web 
as machine-understandable information (2001). In this view, machine-understandable information is 
accomplished by assigning certain data expressiveness to metadata, which is usually an ontological 
form of data, has logical semantics, and is amenable to inference. The basic model of the Semantic 
Web is resource description framework (RDF), a standardized format for representing and exchanging 
data for describing relationships and properties between resources (d’Amato, 2020).

Knowledge graphs (KGs) consist of structured collections of relationships represented as triples 
(head entity, relationship, tail entity). They are widely used in various projects, such as intelligent 
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quizzes, comprehensive searches, and recommender systems that rely on substantial data support. 
Considering the historical issues of semantic networks, especially ontologies, knowledge graphs can 
be viewed as a richer and more complex semantic network (e.g., RDF), which can contain multiple 
types of entities and relationships and provide richer semantic information (Breit et al., 2023). 
Despite containing millions of factual statements, KGs still require a considerable amount of work. 
For instance, a significant portion of individuals in the Freebase Knowledge Graph, around 71%, lack 
information regarding their place of birth, while 75% lack information about their nationality (Dong 
et al., 2014). This highlights the incompleteness of knowledge coverage within KGs. To address this 
issue, the task of knowledge graph completion (KGC) was introduced.

Knowledge graph completion refers to the task of predicting the presence of connections or edges 
between two nodes in graph-structured data. In the context of graph theory and network analysis, a 
graph comprises a collection of nodes and the edges that connect them. The objective of KGC is to 
infer the existence of unknown edges by leveraging the available partial graph information.

The concept of low-dimensional embedding involves mapping high-dimensional representations 
of entities and relations into a lower-dimensional vector space. This mapping enables the distances and 
relationships between entities and relations in the vector space to reflect their semantic similarities 
and associations within the knowledge graph. Numerous approaches exist for achieving knowledge 
graph completion through low-dimensional embedding. The challenge lies in maintaining a low 
embedding dimension while still achieving satisfactory model performance.

In recent years, notable progress has been made in knowledge graph completion using the 
enhanced generic encoder of the transformer model (Baghershahi et al., 2022; Liu et al., 2022; X. 
Zhang et al., 2022). The attention mechanism, particularly self-attention, has played a crucial role 
in achieving these advancements. Self-attention effectively captures the dependencies among linear 
projections within the model and maps them to the output, allowing important information to be 
learned and focused automatically. Despite the impressive results obtained with transformer models, 
they often face challenges related to high-dimensional embeddings, complexity, and scalability. These 
issues arise from the stacking of multiple encoder layers and the subsequent increase in the number 
of coding blocks (Baghershahi et al., 2022).

In order to solve some of the these problems, we introduce an improved transformer-based 
model TFttOM; due to the inclusion of multi-layer self-attention and feed-forward networks in the 
encoder, we reduce the transformer encoder block instead of stacking and mixing multiple encoders 
as a way to reduce the overall number of parameters of the model and the computational complexity, 
thus improving the model computational efficiency. We introduce a separable self-attention method 
with linear complexity to reduce the free parameters and thus enhance the computational efficiency. 
For the binary cross-entropy function, we choose to optimize it to improve the model’s recognition 
ability. The contribution of this paper can be summarized in the following three areas. (1) TFttOM was 
proposed to reduce the overall parameter count and improve computational efficiency by simplifying 
the encoding and decoding modules. (2) The introduction of the linear separable self-attention module 
reduces the time complexity of the model. (3) A new loss function is proposed to reduce the risk of 
semantic discrimination while improving generalization ability.

RELATED WORK

At present, knowledge graph completion (KGC) has evolved along two main directions: model 
embedding-based approaches and neural network-based approaches.

Knowledge graph embedding (KGE) methods aim to represent entities and relations in a low-
dimensional continuous vector space and calculate relations between these vectors. However, encoding 
all the information of a large knowledge graph can lead to high-dimensional embeddings in KGE. 
High dimensionality can cause issues such as overfitting, complexity overload, and difficulties in 
similarity comparison and distance computation between embedded vectors. Common KGE models, 
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such as TransE (Bordes et al., 2013), TransR (Lin et al., 2015), TransD (Ji et al., 2015), and Complex 
(Trouillon et al., 2016), can only encode symmetric and asymmetric relations. However, the relatively 
new model RotatE (Sun et al., 2019) has shown good results in inverse and combined relations but 
needs to improve in predicting complex relations. To address this limitation, a new KGE model called 
PairRE (Chao et al., 2021) was introduced, which can encode complex relations and multiple relations, 
achieving good results in predicting complex relations. Recently, Y. Li et al. proposed a new model 
called TranSHER (2022) by combining the ideas of TransE and PairRE. TranSHER improves the 
modeling of complex relations and introduces a new scoring function, resulting in good performance 
in the field of knowledge graph completion. Despite the progress made by these methods in prediction 
tasks, they often suffer from complexity due to the large number of non-embedded free parameters, 
which grows rapidly with the size of the knowledge graph.

Neural network-based approaches often rely on graph neural networks (GNNs), which operate by 
iteratively propagating node and neighbor information and combining them using aggregation functions 
(Wu et al., 2021). Wang et al. proposed a semi-supervised deep model with multi-layer nonlinear 
functions, improving the representation of graph embeddings by capturing highly nonlinear graph 
structure information (2016). Hamilton et al. introduced the GraphSAGE algorithm, which utilizes 
graph convolutional neural networks (GCNs) to learn node representations (2017). This approach 
achieves scalability and high performance in knowledge graph completion (Hamilton et al., 2017). 
Sultana et al. proposed a unified learnable and line graph-based graph neural network framework 
(year). This approach mitigates excessive smoothing and information loss caused by stacking layers 
and pooling operations, respectively, to optimize the results of knowledge graph completion (Morshed 
et al., 2023). GNNs have the advantage of being less dimensional compared to KGEs due to their 
high expressiveness. However, they can still face challenges related to stacking modules on top of 
each other, leading to complexity and scalability issues, as mentioned earlier.

In recent years, there has been significant research on methods for achieving low-dimensional 
knowledge graph completion (KGC). Sachan et al. proposed a quantization-based method where 
each entity in the knowledge graph is compressed and represented as a discretely encoded vector, 
which forms the embedding layer (Jurafsky et al., 2020). While this approach reduces the embedding 
dimension, it often leads to slower inference speed and difficulties in model convergence. Balaževic 
et al. discovered that embedding entities and relationships into hyperbolic space can enhance the 
hierarchical modeling of knowledge graphs. They introduced the MuRP model, which leverages 
hyperbolic space for better representation (2019). Chami et al. further improved on this with the AttH 
model, which utilizes logistic pairs of equidistant modes in hyperbolic space to model knowledge 
graphs (2020). However, a major drawback of hyperbolic space embeddings is that the embedded data 
is challenging to use in downstream tasks. Zhu et al. proposed the DualDE model, which employs 
knowledge distillation to learn from high-dimensional representations and then embeds them into 
low dimensions (2022). This approach aims to compress the model size and improve inference 
speed. However, a drawback of this method is that it requires substantial training time to reduce the 
dimensionality of its features.

The importance of web semantic optimization is to improve the semantic understanding and 
processing of data, promote knowledge discovery and reasoning, and improve the knowledge graph. 
Recently, Li et al. proposed a SPARQL-based reasoning framework that optimizes four semantic 
ontologies to achieve automated safety checking by combining the safety risk data from BIMs and 
sensors (2022). However, this framework could be more effective in dealing with similar data (X. 
Li et al., 2022). Geng et al. (2022) used a genetic algorithm to optimize the alpha network of the 
Rete algorithm and proposed a lightweight reasoning engine, tiny uke. This method reduces the 
occupation of storage resources, shortens the reasoning time, and proposes a four-tuple knowledge 
representation method with a probability factor for uncertain knowledge so that the reasoning engine 
can realize self-adaptation. However, this engine has yet to be tested on more hardware platforms and 
lacks certain scalability. P. Li et al. (2022) proposed a high-order information dissemination method 
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based on the knowledge map, which explored the potential information in the knowledge map by 
mining the relationship between entities. In addition, it also enriched the entity representation by 
double entity aggregation. However, this method does not use the semantic relationship information 
in the knowledge map; that is, it does not deal with the lack of information in place. Manaa et al. 
proposed a hybrid recommender system using linked open data and ant colony optimization, which 
solves the lack of recommendation diversity and reduces the complexity of similarity computation 
(2023). However, this method still needs to solve the problem of slow convergence of the ant colony 
algorithm, thus falling into local optimal solutions (Manaa et al., 2023).

Indeed, the transformer architecture has demonstrated impressive performance in various 
coding and decoding tasks (Vaswani et al., 2017). Researchers have also explored the application 
of transformers in the context of knowledge graph completion. X. Chen et al. proposed a hybrid 
multimodal perceptual transformer framework that utilizes transformer encoding, leveraging the 
attention mechanism to achieve hybrid multimodal coding (2022). This approach allows for the 
effective integration of different modalities through attention mechanisms. Peyman et al. fused 
transformers into knowledge graph embedding by employing low-dimensional representations 
and multi-head attention to achieve highly expressive vector representations (Baghershahi et al., 
2022). While this approach achieved good results, the large number of free parameters in the 
multi-head attention module can impact model performance. Chen et al. introduced PatReFormer, 
a patch refinement model based on the transformer architecture (date). PatReFormer divides the 
embedded data into a series of patches and employs a cross-attention module for the bidirectional 
embedding of entities and relations. This approach addresses the limitations of linear variation, 
deep convolution, and inductive bias, thus improving performance (C. Chen et al., 2023). However, 
it should be noted that the patch articulation in PatReFormer does not involve encoding at relevant 
positions, which may introduce certain hidden issues. In summary, transformer-based coding in 
knowledge graph completion has demonstrated excellent capabilities, especially when combined 
with its attention mechanism for comprehensive processing of entity and relationship information 
within patches. However, transformers may face computational and memory challenges when 
dealing with large-scale knowledge graphs.

In the field of KGC, there has been a proliferation of transformer-based approaches, and the 
performance of these models has been steadily improving over the years. However, the embedding 
dimensions of these models have also been increasing, often needing a clear understanding of the 
optimal dimensionality. For example, ConvE (Dettmers et al., 2018) achieves optimal performance 
in 200 dimensions, while QuatE (S. Zhang et al., 2019) slightly surpasses ConvE but requires 400 
dimensions. Rotate (Sun et al., 2019), which serves as a benchmark among these models, reaches an 
impressive dimensionality of 1000. Given the desire for both low embedding dimensions and good 
model performance, there is a need to explore approaches that can strike a balance between these 
two factors. Research efforts can focus on developing novel techniques or modifications to existing 
models that enable effective knowledge graph completion with lower-dimensional embeddings 
without sacrificing performance.

LOW-DIMENSIONAL SPACE TRANSFORMER-BASED 
KNOWLEDGE GRAPH COMPLETION APPROACH

Utilizing the self-attention mechanism of transformers in the context of knowledge graph completion 
can be a promising approach. The self-attention mechanism allows the model to capture dependencies 
and interactions between entities and relationships effectively (Likhosherstov et al., 2021). By 
incorporating the self-attention mechanism into the model, we can leverage its ability to capture fine-
grained interactions and dependencies between the entities and relationships in the knowledge graph. 
It can improve the model’s ability to make accurate predictions and achieve higher performance in 
knowledge graph completion tasks.
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Background and Problem Description

Knowledge graphs can be viewed as factual triples collections G h r t µ R µ
i j k

= ( ){ } ∈ × ×( ), ,  where

µ and R  denote the set of entities (nodes) and relationships (edges) respectively. h
i
 and r

j
 represent 

the ith entity and the jth relation, and the types of relations are large in either KG. The main task of 
knowledge graph completion is to replace the true triples in the knowledge graph by replacing, for 
example h r t h r t

i j k i j b
, , , ,( )→ ( ) , replacing the tail entity t

k
 with t

b
, and then verifying that the new 

ternary h r t
i j b
, ,( )  continues to be true, and the replacement includes but is not limited to tail entities.

Transformer and Knowledge Graph Completion Generic Models
The generic steps for combining transformer with knowledge graph completion work are as follows: 
(1) First, the µ and R  of each entity in the e µÎ  and the relationship r RÎ  are represented as d

e
 

and d
r
 dimensional vectors, and in the model d

e
 and d

r
 can be set according to different scenarios, 

generally for better compatibility of the model, and the entities and relations have the same embedding 
dimension (i.e., d d d

e r
= = ). (2) Next, the already embedded vectors are fed into the transformer 

encoder, where the vectors will first be affected by the self-attention module, which is usually chosen 
differently depending on the dataset at the time of selecting the attention module. The specific flow 
of the multi-head attention (MHA) mechanism (Vaswani et al., 2017) is shown in Figure 1. The query, 
keys, and values are generated by linearly transforming the inputs, then they are used to compute the 
attention weights individually, and finally, the attention weights are multiplied with the values and 
weighted and summed to get the final multi-head attention representation. The final output under the 
encoder is an embedding matrix to represent the entities e

t

  and relationships e
r

 , which then goes 
to the decoder and obtains the scores by scoring each ternary; the choice of the decoder should be as 
simple and efficient as possible, so basic decoders such as MLP, TwoMult, and Tucker are enough 
to solve the problem.

Decoder TwoMult and Tucker
The decoder TwoMult remaps the data-decomposed low-dimensional representation back into the 
original high-dimensional data space by means of a two-way inner product to enable data reconstruction 
and recovery so that for the decoder’s output relational representation e

r

  and target entity e
t
, we 

obtain the score by simply calculating the two-way inner product and the specific score calculation 
is shown in equation (1):

φ h r t e er
T

t, ,
~

( ) = × 	 (1)

The decoder Tucker decomposition is shown to have extreme expressiveness in the field of 
knowledge graph completion. For KGs of binary tensor, TuckER (Balažević et al., 2019) uses the 
Tucker decomposition proposed by Tucker (1966) to compute the score of each triple, where (term) 
stands for entities and (term) stands for relations. The calculation steps are shown in equation (2):

φ h r t W e e ec h r t, ,( ) = × × ×
1 2 3

	 (2)

Where W
c

d d d∈ × ×  is the learnable decomposition core tensor, and ń denotes the tensor product 
of n modes. In the original Tucker decomposition, there exists an exponential growth of the number 
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of free parameters with respect to the size of the embedding. In contrast, in our case, the number of 
free parameters of the core tensor can be chosen arbitrarily due to the fact that the model is in a low-
dimensional state space.

The TwoMult method, noted for its computational efficiency, deftly encodes the source entity’s 
data into the model’s relational representation in a nuanced, implicit way. Upon inspecting the output 
representation of the source entity, a reduction in the mean reciprocal rank (MRR) (refer to the 
evaluation metrics below) index was observed, signifying that the relational output representation 
possesses a more substantial informational payload than that of the source entity itself (Baghershahi 
et al., 2022).The main advantage of Tucker lies in its powerful expressive power. For example, e

h
 

and e
t
 represent the d-dimensional representations of the subject entity and object entity, respectively. 

For each subject entity eh
i , relationship r j , and object et

k , the corresponding elements of i, j, and k 
are set to 1, and the remaining elements are set to 0. If the triplet  e e e

h r r
, ,  holds, then W

c
 is set to 

1, and if it does not hold, then it is set to -1. The product of entity embedding and the relationship 
embedding with the core tensor, after applying logistic sigmoid, accurately represents the original 
tensor. Those interested in this verification can refer to the original paper.

After the respective scores are obtained in the above manner, they are finally fed into a logistic 
S-function to calculate the probability of the target entity pair.

ATTENTION MODULES, LOSS FUNCTIONS, AND 
IMPROVEMENTS IN WEB SEMANTICS

Improvements to the Multi-Attention Module
Multi-Attention Module
The self-attention module used in the general model is called Multi-Head Attention (MHA). 
Specifically, MHA uses k d-dimensional label embeddings to form the input module X. The input X 
is then fed into three branches: query Q, key K, and value V. These three branches are composed of 
h heads (linear layers). The dot product between the output of the linear layers in query Q and key 
K is calculated, and then the attention matrix is generated by softmax operation. At this point the 
mathematical expression of the attention matrix is shown in equation (3):

H softmax
Q K

d
i

i i
T

k

=











	 (3)

Hi  is specifically represented to each header. Finally the output of the attention module is shown 
in equation (4): 

MHA Q K V Concat H H Wi
O, , , ,( ) = ( )1

 	 (4)

In KGC, since the existing data is generally in the form of triples, for all triples h r t, ,( ) , the 

h
d
modelÎ   and r d

modelÎ  , the embedded matrices h r,( )  will be considered as the query Q d d
model∈ × , 

the key K d d
model∈ ×  and the value V d d

model∈ × . In the above equation, the Q QW
i i

Q=  the 
K KW
i i

K=  and V VW
i i

V= ,  here  W
i

Q d d
model∈ × ,  W

i

K d d
model∈ × ,  W

i

V d d
model v∈ × ,  and 

W
O d hd

model v∈ ×  and where h  is the number of heads. Attention matrix Hi  can be understood 
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specifically as the amount of attention we should give to our entities compared to the relationship. 
From the attention mechanism, we can understand that it is dependent on the linear projection of the 
query acts on the input, and continues to pass information in the feed-forward neural network 
(Likhosherstov et al., 2021), so it plays a very important role in the fusion of entities and relationships.

Separable Self-Attention

Although the Hi  matrix is important the model, in MHA, the batch matrix multiplication is used to 
calculate the attention; such an approach has a big problem in that the computational resources are 
limited by the capacity of the hardware facilities at the same time its free parameters are too much, 
so we chose the separable self-attention (MVT2) based on MHA.

The data embedded in MVT2 is divided into query Q , key K , and value V . Here, it is the 
same as the unimproved MHA, but in query Q  first goes into a single linear layer (compared to 
MHA, we only set up a single linear layer) to map each d-dimensional token in the input message X  
to a scalar (a dimensionality reduction operation) and use it as weights W

i

dÎ   to compute the 
distance between the potential tokens and X , thus generating a k-dimensional vector, which then 
goes into a softmax operation to generate the context score C

s

kÎ   . Here only the context score 
of potential token L  is computed, so this reduces the time cost of computing attention from O K2( )  
toO K( ) . The critical branch K  in the input message X  is similarly linearly projected into a single 
linear d-dimensional space to produce the output X

K

k d∈ × . The context vector C
v

dÎ   is C
s
 

and X
K

 weighted sum of the inputs, at which point its mathematical expression is shown in equation 
(5):

c c i X iv s K
i

k

= ( ) ( )
=
∑

1

	 (5)

This way, by c
v

, we get all the information in the input X  with low computational cost. Using 
the weights W

V

d d∈ ×  as the branch V , after linear activation by RELU, we get X
V

k d∈ × . Then, 
the context vector c

v
 is propagated by element-by-element multiplication to x

V
 . Finally, the resulting 

output is fed to another weighted W
O

d d∈ ×  of the linear layer to produce the final output y k d∈ × . 
The overall expression from a mathematical point of view is shown in equation (6):

y xW xW RELU xW WI K V O= ( )∗( )∗ ( ){ }∑ σ 	 (6)

Among c
x

 is Ã xW
I

( )  the c
v

 is ∑ ( )( )Ã xW *xW
I K

.  Moreover, *  and å are element-by-element 
multiplication and summation operations.

H FFN y
o
= ( ) , where the FFN x( )  The expression of (term) is shown in equation (7):

FFN x xW b W b( ) = +( ) +max ,0
1 1 2 2

	 (7)

The token feed-forward network mainly helps us transform the sequence without all of the 
elements affecting each other; we set it up here as two elements where the relationship represents the 
e
r

  and target entity e
t
. The specific flow of MVT2 is shown in Figure 2.
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Figure 1 is the standard multi-headed attention (MHA) joint in transformers. Its complexity is 
O K2( ) ; it is quadratic with the number of tags K and uses batch matrix multiplication to calculate 
attention, which consumes many computing resources. Figure 2 is linear and separable in complexity; 
the time complexity is O K( ) , and the element-by-element multiplication is used. This method is 
more flexible and memory-saving in processing.

Improvement of the Loss Function
The loss function is an index to measure the difference between the model output and the actual 
value; we hope it can also contribute. Therefore, we introduce the Lb  loss function and combine 
and optimize the binary cross-entropy loss function. In Lb , we expect to reach a certain fairness 
standard for different prediction results, so we add an average strategy to the original binary cross 
entropy function; at the same time, fairness constraints are added to the total loss function to reduce 
the risk of semantic discrimination. The original binary cross entropy loss function is shown in 
equation (8):

L
n

y y y p yi i i i
i

n

= − × ( )+ −( )× − ( )( )



=

∑1 1 1
1

log log 	 (8)

Figure 1. Multi-headed attention diagram
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Where y
i
 is the label, whose value is either 0 or 1, commonly understood as binary yes and 

no. p y
i( )  is the probability that the output belongs to y

i
.

The introduced L
b

 loss function is shown in equation (9): 

L
N

L p gb i i
i

N

= ( ) ( )( )
=
∑1
1

, 	 (9)

where g
i
 is the ground-truth value, and p

i
 is the predicted value. To better incorporate into our 

model, we redefine the binary cross-entropy function as shown in equation (10):

L
N

y p y pt t t t t
t N

= − × ( )+ −( )× −( )





∈

∑1 1 1' ' ' '

'

log log 	 (10)

where p Ã h r t
t ′ = ( )( )′φ , ,  and y

t

t ′ =
=







′1

0

����� �� ,

���� ����� .

if t
otherwise

Figure 2. Separable self-attention diagram
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In the above equation, the Ã ( )  is the logistic sigmoid function, where φ h r t, , ′( )  is the score 
predicted by the decoder for different tail entities and N  is the number of total entities. Then L

b
 

the definition of (term) is shown in equation (11):

L
N

Lb tn

N
=

=∑
1

1
	 (11)

where L
t
 is the redefined binary cross-entropy function. Finally the L

t
 function and the L

b
 

function are combined to obtain the total loss function L
S
, defined as shown in equation (12):

Ls L Lt b= +α β 	 (12)

In L
S
, we introduce α and β. As the fairness constraint of the loss function, it ensures that the 

model achieves a certain fairness standard for different prediction results and reduces the risk of 
semantic discrimination.

Improvements in Web Semantics
In order to avoid the problem of overgeneralization of our model, improve the accuracy of the given 
triplet real value (t) during the search process, and improve the results of the header entity (h), we 
adopted a strategy to improve the model. Specifically, we choose to introduce local negative examples 
into the training; that is, the inverse of each triplet t r h, ,−( )1  is added to the training data as a negative 
example so as to achieve the diversity of the data set and reduce the dependence on the specific data 
distribution.

The purpose of introducing local negative cases is to make model learning distinguish the 
difference between positive cases and negative cases. By taking the inverse value of the triple as a 
negative example, the model will try to distinguish the positive case from the negative case so that 
the score of the positive case is higher and the score of the negative case is lower. In this way, the 
model can better capture the correlation between positive cases and reduce the false matching of 
negative cases.

The introduction of local negative examples makes the model more robust, provides generalization 
ability, and enables it to carry out reasoning and prediction more accurately in training. At the same 
time, we also adopt the early stop strategy. By monitoring the performance indicators of the verification 
set, we observe that when the performance of the verification set is no longer improved, we end 
the training in advance. Through the above training strategies, we can improve the generalization 
ability of the model, reduce overfitting, and make it better able to meet the challenges in the task of 
knowledge map completion.

The introduction of all the essential components of TFttOM is completed, and its overall flow 
is shown in Figure 3.

(1) 	 Feed the source entities and relationships in the mapping into the transformer-based encoder 
after encoding their positions.

(2) 	 Reduce time complexity with separable self-attention mechanisms in encoders.
(3) 	 With the completion of the decoder, calculate and output the resulting score.
(4) 	 Combine the resulting scores with a logistic S-function to make predictions.
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EXPERIMENTAL ANALYSIS

Experimental Data Set and Partial Parameter Setting
We chose the more popular datasets FB15K-237 (Toutanova et al., 2015) and WN18RR (Dettmers et 
al., 2018), which are subsets of FB15k and WN18, respectively, to evaluate our model (Bordes et al., 
2013). Compared to FB15K, the FB15K-237 dataset features a reduced number of relationships yet 
encompasses a greater number of triples, rendering the evaluation process for models more rigorous. 
Moreover, the variance in both the quantity and the categories of relationships means that FB15K and 
FB15K-237 differ in their respective application domains. For instance, FB15k boasts a broader array of 
relationship types spanning various sectors such as film, television, music, individuals, organizations, 
and locations. While FB15K-237 also touches upon these domains, it has been meticulously curated 
to place a stronger emphasis on applications in natural language reasoning, question-answering, and 
other similar fields. In the same vein, the WN18 and WN18RR datasets differ: WN18RR encompasses 
a higher count of missing relationships than WN18, which amplifies the complexity of relational 
reasoning and prediction. Additionally, WN18RR addresses certain inaccuracies and inconsistencies 
found in the WN18 dataset, thereby enhancing its reliability.

The FB15K and WN18 datasets are plagued by significant issues of test data leakage, which 
compromises their integrity for effective model evaluation. To mitigate this, a more challenging subset 
has been adopted as the experimental dataset in the hope of achieving superior performance across 
various types of knowledge graphs. Table 1 provides a detailed breakdown of these two datasets.

The experiment was carried out on a Linux system and NVIDIA GeForce 3090 GPU. In addition, 
there are some important parameter settings. In order to meet the requirement that our model can 
also achieve better performance when embedding in low dimensions, we chose 100 for the embedding 
dimension of entities and relationships, that is, d de r= = 100 , and we chose to use the mode of 
random search and adjustment for the remaining super parameters. First, we chose {128, 512, 1024, 
2048} for the batch size. In order to speed up the training process and prevent certain overfitting, we 
changed the learning rate from {0.0001, 0.005, 0.001} and set the attenuation rate from {1, 0.995}. 

Figure 3. The basic flowchart of the TFttOM model
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Finally, our choice of batch size was 1024, the learning rate was 0.001, and the decay rate was 0.995. 
The loss function was set to 0.1, where α and β Set to 0.4 and 0.6, respectively.

Evaluation Indicators
In knowledge graph completion, metrics such as mean reciprocal rank (MRR) and Hit@N are 
commonly used to evaluate the performance of models across various datasets. MRR calculates the 
average reciprocal rank of the true triples. It considers the rankings of the actual triples and assigns 
higher scores to those ranked closer to the top. By taking the reciprocal of the rank, MRR focuses on 
the relative importance and position of the actual triples within the rankings. A higher MRR indicates 
better performance. Hit@N, however, measures the percentage of actual triples that appear within the 
top N ranks. It focuses on whether the actual triples are present within a specific range of rankings. For 
example, Hit@1 calculates the percentage of true triples that occupy the top rank. Hit@10 calculates 
the percentage of true triples within the top 10 ranks. Higher Hit@N values indicate a better ability 
to rank the true triples within the top positions. While MRR and Hit@N provide insights into the 
model’s performance, MRR offers a more comprehensive evaluation perspective by considering the 
reciprocal ranks of all the true triples. It gives a broader assessment of the model’s ability to rank the 
true triples accurately. So, we chose MRR as the primary evaluation metric.

Comparison of Experimental Results With Mainstream Models
We compared our approach with several state-of-the-art models in different categories. Among the 
path-based methods were Path-Ranking (Lao & Cohen, 2010) and NeuraILP (Yang et al., n.d.); 
among the embedding-based methods were RotatE (Sun et al., 2019), ConvE (Dettmers et al., 2018), 
QuatE (S. Zhang et al., 2019), TuckeR (Balažević et al., 2019), McRL (J. Wang et al., 2023), HRGAT 
(Liang et al., 2023), and GIE (Cao et al., 2022). Since the main framework of our model is based 
on the transformer, we also picked other transformer-based models, CokE (Q. Wang et al., 2020), 
HittER (S. Chen et al., 2021), and SattLE (Baghershahi et al., 2022) for comparison. The results of 
the experiments are shown in Table 2.

The experimental findings affirm the value of our strategies to diminish overgeneralization and 
error propagation through the incorporation of inverse values in the dataset and the refinement of the 
loss function. As illustrated in Table 2, the TFttOM model demonstrates superior performance over 
its contemporaries on the same dataset, particularly in lower dimensions. In the WN18RR dataset, 
our model outperforms competitors like RotaTE, ConvE, and QuatE with relative ease. Likewise, in 
the FB15K-237 dataset, our model surpasses other contenders, securing impressive results. Notably, 
against state-of-the-art models such as McRL, GIE, and HRGAT on the FB15K-237 dataset, our 
model, utilizing the Tucker decoder, achieves an MRR of 0.378. This represents a marginal yet notable 
improvement of 0.2% over McRL, 4.4% over GIE, and 3.3% over HRGAT. With the TwoMult decoder, 
our model attains an MRR of 0.364, which, while not markedly distinct, highlights our model’s 
competitive edge, especially considering its lower embedding dimension. In the WN18RR dataset, 
our model with the TwoMult decoder outstrips recent models such as McRL, GIE, and HRGAT. In 
order to more intuitively understand the comparison between us and the latest models, we analyzed 
the advantages and disadvantages of each model in Table 3.

Table 1. Dataset statistics

Dataset Entity Relation Train Validation Test

FB15K-237 14541 237 272115 17535 20466

WN18RR 40943 11 86835 3034 3134
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Based on the analysis in the table above, we will briefly discuss KGC’s future research directions. 
First, multimodal fusion, integrating data types such as text and images, improving the richness of 
knowledge graphs, and better reflecting the real world. Second, further research will be conducted 
on dynamic or regularly updated knowledge graphs, known as temporal knowledge graph completion 
(TKGC), to reflect the latest developments in knowledge.

Table 2. Knowledge graph completion results for FB15k-237 and WN18RR

Methods DoE
FB15k-237 WN18RR

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

Path-Ranking - 0.174 0.119 0.186 0.285 0.324 0.276 0.360 0.406

NeuraILP 128 0.240 - - 0.362 0.435 0.371 0.434 0.566

RotatE 1000 0.338 0.241 0.975 0.533 0.476 0.428 0.492 0.566

ConvE 200 0.319 0.232 0.351 0.492 0.462 0.431 0.476 0.525

QuatE 400 0.348 0.248 0.382 0.550 0.488 0.438 0.508 0.582

TuckER 200 0.358 0.266 0.394 0.544 0.470 0.433 0.482 0.526

McRL 400 0.377 0.283 0.376 0.559 0.491 0.477 0.530 0.576

GIE 250 0.362 0.271 0.401 0.552 0.491 0.452 0.505 0.575

HRGAT 200 0.366 0.271 0.404 0.542 0.491 0.454 0.503 0.567

CokE 256 0.364 0.272 0.400 0.549 0.484 0.450 0.496 0.553

HittER 320 0.373 0.279 0.409 0.558 0.503 0.462 0.516 0.584

SAttLE 100 0.360 0.268 0.396 0.545 0.491 0.454 0.508 0.558

TFttOM+TwoMult 100 0.364 0.285 0.425 0.570 0.494 0.458 0.510 0.562

TFttOM+Tucker 64 0.378 0.281 0.423 0.567 0.490 0.457 0.507 0.553

Note. DoE represents the dimension of the embedding. MRR is the main performance reference (larger results are better).

Table 3. Conduct an assessment of the merits and demerits exhibited by distinct models

Methods Merits Demerits

CokE
A more comprehensive integration of the 

intrinsic contextual characteristics endemic 
to entities and their interrelations

The fusion of contextual information introduces a significant 
increase in computational complexity, which poses scalability 
challenges in the processing of large-scale knowledge graphs

HittER
The hierarchical structure is used to help the 
model capture different levels of semantic 

information layer by layer

Involves the selection of multiple hyperparameters, such as 
the number of attention layers and the number of heads

SAttLE
In low-dimensional embedding, a single 

Transformer encoding can be used to quickly 
achieve strong scalability.

No regularization method is added to the model, which may 
lead to overfitting

McRL
Capture the complex conceptual information 

hidden in entities and relationships by 
projecting them into multiple vectors

No corresponding improvements have been made to the 
decoder

GIE
Interactive learning in Euclidean space, 

hyperbolic space and hyperspherical space to 
accurately mine the complex structure of KG

The problem of overfitting is not explained, so this problem 
may exist

HRGAT More different modal information that 
integrates entities and relationships

Different modes lead to greater demand for embedding 
dimensions.
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ABLATION EXPERIMENTS

Impact of Attention Mechanisms
In order to fully explore the quality of our model in different situations, we chose to compare SAttLE 
using the underlying multi-head attention module with the approach used in this paper. Since the 
focus of multi-head attention is on the number of heads, we chose several different numbers of heads 
for comparison. The experimental results are shown in Table 4.

As can be seen in Table 4, the performance of SAttLE grows to different degrees with the 
number of heads of attention replaced, where the MRR improves from 0.35 to 0.36 in dataset 
FB15K-237 and from 0.48 to 0.491 in dataset WN18RR. In contrast, there is no improvement in 
the performance when the number of heads is changed from 64 to 128, but the heads The greater 
the number of attentions, the greater the number of non-embedded free parameters (NFP) of the 
model grows, which affects the inference speed. Despite increasing the number of heads, our model 
consistently outperforms SAttLE. Thus, MVT2 achieves very significant results as the attention 
module of the model.

Impact of Embedding Dimensions
As it was proven in previous experimental results that our model can achieve great results and great 
scalability with low dimensional embeddings, we chose to continue to challenge the performance 
case of the model further at lower embedding dimensions. Here again, we chose DoEs of 100, 64, 
and 32. The results at FB15K-237 are shown in Figure 4.

Impact of the Loss Function
We hope that the improvements to the loss function will benefit the model, so the original loss function 
was selected to be compared with our improved loss function, replacing only the loss function when 
other factors that may affect it are the same. The results are shown in Figure 5.

As can be seen in Figure 5, as the number of training rounds increases, using our improved loss 
function is 3.488E-4 at an Epoch of 200, we can achieve better convergence concerning the original 
loss function’s final convergence number of 3.635E-4, which results in a lower training error or loss 
value, and better generalization ability.

CONCLUSION AND FUTURE WORK

Completion model: TFttOM reduces computational complexity by improving the self-attention module 
and using simple and efficient decoding methods, using new loss functions to improve discriminative 

Table 4. Comparison results of MRR between TFttOM and SattLE on FB15k-237 and WN18RR

Methods Heads
FB15k-237 WN18RR

MRR MRR

SAttLE

8 0.350 0.480

32 0.358 0.486

64 0.360 0.491

128 0.360 0.492

TFttOM - 0.364 0.494

Note. Where d = 100 and heads in 8, 32, 64, 128
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features while reducing the risk of semantic discrimination and adding specific inverse values to the 
data set to reduce the risk of semantic discrimination.

Overfitting: Theoretically, the advantage of TFttOM is that it can achieve good performance in a 
low-dimensional state. Empirical evaluation of different data sets shows that TFttOM is competitive 
in knowledge graph completion performance compared with existing advanced models.

By comparing different models, we also found our shortcomings. In the future, we plan to reduce 
overfitting by adding regularization methods to our models and mining more hidden information in 
the data to achieve optimal .

Figure 4. Experimental results of e model using different DoE cases

Figure 5. Before and after loss function replacement
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