
DOI: 10.4018/IJICTHD.299413

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Fast Path Reservation Scheduler
Vidya Sachin Kubde, Datta Meghe College of Engineering, India*

Sudhir D. Sawarkar, Datta Meghe College of Engineering, India

ABSTRACT

In multihomed devices, multipath transmission control protocol is a transport layer protocol that
allows TCP segments to be sent over several paths. The authors look at several multipath TCP
schedulers in this study and highlight some current outstanding concerns including head-of-line
blocking, bandwidth aggregation, and out-of-order packets. The majority of these difficulties degrade
MPTCP performance, which may be improved by constructing an MPTCP scheduler properly. Then,
utilizing the bandwidth of all potential routes, they develop a novel MPTCP packet scheduler dubbed
a fast path reservation scheduler that not only helps to solve the aforesaid problems, but also delivers
optimal throughput with a short execution time. The size of the receiver buffer or the size of the data
being transmitted have no effect on the performance of FPRS, which transmits packets of data to the
receiver in the order they were received. Both empirically and analytically, the authors show that the
suggested scheduler outperforms the competition.

Keywords
Head of Line Blocking, MPTCP Scheduler, Path Utilization

INTRODUCTION

MPTCP is a TCP extension designed for today’s multihomed devices. The IETF’s Multipath TCP
working group Baidya and Prakash (2020) is working on MPTCP. TCP is a commonly used single path
protocol that must be re-established if it fails. To deal with network failures, MPTCP estab- lishes a
single connection with all accessible interfaces Baidya and Prakash (2020).It supports different TCP
connections for a single stream of data in an efficient way[fig1].MPTCP is also advantageous for
resource utilization and bandwidth aggregation Paasch and Barre (2014).The Linux Kernel MPTCP
implementation Apple (2017) is one of the most frequently used MPTCP implementations today,
aside from Apple’s implementation for Siri Postel (1981).

MPTCP relies on two main components: congestion management and packet scheduling . The
congestion control limits the number for every path’s congestion window and updates this after every
packet transmission Chaturvedi and Chand (2018). A scheduler assigns the packets to the available
paths. A wrong scheduling decision leads to decrease in performance of MPTCP in both the hetero-
geneous networks and homogeneous networks such as decrease in throughput, higher download
time, poor path utilization Barre´et al. (2011). Path heterogeneity causes an increase in out-of-order
packets, which causes a Head of Line (HOL) blocking issue due to receiver window limitations. An

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

2

optimized packet scheduler will use all available paths and reduce out-of-order packets to increase
throughput and download time Scharf and Kiesel (2006).

We propose the Fast Path Reservation Protocol (FPRS) to tackle HoL blockage, out-of-order de-
livery, and bandwidth aggregation. This leads in faster completion times and in-order delivery . The
FRPS is tested in the Linux kernel Paasch and Barre (2013) . We compare FPRS ’ performance to
various current packet schedulers in terms of throughput, completion time and Bandwidth agregation .

On the rest of the paper: Section 2 explains packet schedulers’ history. This section examines
existing scheduler vulnerabilities. inspiration for a new packet scheduler Sect. 3 shows the research
work (FPRS). In Section 4, we compare the FPRS scheduler’s performance to other Linux schedulers.

BACKGROUND & MOTIVATION
In single path TCP, packets arrive in sequence assuming they are neither lost nor re transmitted Hurtig
(2018). Packets are out of order at the recipient end due to MPTCP’s numerous routes Paasch (2013).
Head of Line Blocking (HOL) reduces throughput.

RFC Ford et al. (2020) defines MPTCP. Recent research has focused on MPTCP

Implementation, design, and performance Kimura et al. (2020) . The scheduler picks paths to
maximise performance over single path TCP. . The scheduler is invoked when the application layer
delivers a new packet or an acknowledgement Bonaventure et al. (2017) . The scheduler will obtain
the route characteristics, RTT, signal strength, throughput, and loss rate. These characteristics are
used to analyse the transmission performance of the routes. To create the connection, the optimum
path is picked.

The unsolved difficulties of packet scheduling in MPTCP have been extensively researched. Some
works employ Round Robin Hwang and Yoo (2015). This scheduler selects routes consecutively. It
couldn’t work in diverse networks. The solution was MinRTT, which picks the path with the least RTT.
MinRTT is now the default MPTCP scheduler Raiciu (2012). The congestion window determines
the data flow on this route. Surprisingly good except for memory-constrained de- vices with a tiny
receiving window Raiciu (2012) discovered this to eliminate head-of-line blockage caused by a small
receiver window. Similarly, DAPS Kuhn et al. (2014) used the forward delay, which is the transmitting
time plus the in-flight time, to estimate packet delivery time. While the work increased accuracy, the
delay aware scheduler is only helpful while RTT and congestion window stay constant. As a result,
DAPS cannot handle network disruptions.

Figure 1. 1 Bandwidth Aggregation in Multipath TCP

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

3

Yang Yang et al. (2014) offers an OTIAS method to address this issue utilizing current data. Its
work is dependent on scheduling more segments on a sub-flow than it can send. Lim thinks the fast
way is underutilized in ECF Lim (2018) . This reduces the time a rapid sub-flow is idle. The principle
is the same as Blest Ferlin (2016), except it encourages only fast pathways. CP Lim (2018) aids by
slowing down. It prefers to pre- vent sluggish paths that cause performance concerns. Unavailable
routes are occasionally preferred in the default scheduler, according to STTF Hurtig (2018). STTF
works by calculating each segment’s transmits time while taking into account data currently in flight.
It deals with out-of-order packet transmission and receiving.

Alternative Multipath Scheduling Options TCP Shi et al. (2018) suggested methods for selecting
routes for diverse purposes; one strategy deals with flow sending rate, while the other utilizes the
great- est available congestion window space. In Qaware, Shreedhar was inspired by the issue that
the most commonly utilized sub-flow steadily in- creases its end-to-end latency, making it less
desirable to use. Using end-to-end delay (local device driver queue occupancy plus end-to- end delay
measurements), they identified a path. Remp Frogmen (2016) is a scheduler that uses all pathways
but transfers the same data on both. Not only does it reduce latency, but it also improves throughput.

DEMS Guo and Ethan (2017) argues that careful scheduling can minimize download time. It does
so by decoupling the two routes, transmitting data forward on one and backward on the other. It also
conducts data re-injection to speed up downloads. Table I summarize the schedulers, emphasizing
their techniques and approaches.

MPTCP performance degrades as a result of receive window restrictions, HoL blocking, and
packet ordering issues. The large receiver buffer size helps to maximize the bandwidth available on
a route. In a normal TCP connection, the size of the buffer is determined by the amount of bytes or
packets that are still outstanding.

Returned bytes or packets define the buffer size in a normal TCP connection . Bk is bandwidth
and rttk = route k round-trip time.

B RTT C  = * 								 (1)

	
As demonstrated in Eq 1, the needed buffer size for multi-path TCP is significantly bigger. Mobile

and other tiny multi-homed devices have a memory buffer that cannot handle the full bandwidth of all
accessible routes. MPTCP delivers out-of-order packets due to numerous routes. The small receiver
buffer size starts dropping packets out of order, causing receive window restriction and HoL blocking
difficulties, reducing throughput. If we fix the receiver buffer’s out-of-order packet problem, the
buffer size has no influence on MPTCP performance. A packet scheduler can tackle the problem of
out-of- ordering. Our new packet scheduler enhances throughput while reducing completion time
and assuring in-order delivery.

PROPOSED WORK
As previously stated, a packet scheduler is important to MPTCP network productivity. In-order
data packet delivery, receive window constraints, lengthy completion times, and HoL blocking are
difficul- ties with existing packet schedulers. A new MPTCP packet scheduler is proposed named as
Fast path reservation protocol (FPRS).

(1) The receiver buffer should receive packets in succession. (2) all routes’ bandwidth should
be used (3) completion time should be as short as feasible When the first requirement is met, the
FPRS is capable of overcoming Head of line blocking and receive window constraints. In this way, it
lowers packet loss and increases speed. The second condition aggregates each interface’s bandwidth
by using Handley et al. (2020) all accessible routes to the MPTCP source. The third criteria help
choose each packet’s path so that the total network completion time is maintained low. Because these

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

4

three aims work together, FPRS outperforms previous schedulers in terms of performance, as shown
experimentally and analytically in the next section.

System Model
The MPTCP protocol is an extension of TCP that offers advantages for bandwidth aggregation and
performance for users, as well as content-rich real-time multi-stream media. These results, however,
may be influenced by variables such as data scheduling methods and route characteristics, as well as
the short, tight sorting restricted receiving buffer. Every bad scheduling choice is likely to have a sig-
nificant impact on MPTCP throughput, which may lead to a deterioration in MPTCP performance.
The suggested scheduler accommodates all network routes and provides a scheduling approach that
in- cludes a data scheduling scheme that decreases re-transmission, reduces out-of-order packets,
improves throughput, and ensures essential data transmission quality assurance.

The above graphic depicts the MPTCP data transmission system architecture, which comprises
the MPTCP sender, the MPTCP receiver, and a multipath heterogeneous wireless network. Two
modules, the Path Sorting Module (PSM) and the Sequencing Module, are included in the sender
(SM). Data from the application layer is sent to the transport layer by a module in the sender. That
module utilises PSM to sort the routes according to their arrival timings. The sequencing module will
assign routes for data transfer in a certain order. The new multimedia multipathing data scheduler will
send data packets based on the uniqueness of routes. By restructuring the data packets, the receiver
will then transmit them to the top layer of the receiver, after which it will send back a SACK message
to the sender.

Path Sorting Module
It is vital to note that all the existing schedulers (including the default) only schedule packets to subflows
with available cwnds. To schedule data, only those subflows that have cwnd available are use- able.
While the cwnd of the present subflows may be exhausted, nonetheless, under our recommended

Figure 2. System Architecture of Proposed Scheduler

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

5

scheduler, all existing subflows may be exploited to schedule data. To achieve this, we shall classify
the routes depending on arrival time.

Now, how can the time of arrival be approximated for each subflow? A subflow’s send buffer
is made up of two things: data that is ready to be sent for the first time and data that is still pending
(i.e., has previously been sent and awaiting acknowledgement) (i.e., has already been sent and awaits
acknowledgement). These two sets of data are designated “Undelivered packets” and “Pending
packets”.

Arrival time of Path K= (Cwnd K-Pending Packets K)* Srtt K

Sequencing Module
The suggested scheduling algorithm works first to minimise out-of-order packets and second to use
all the routes. If a heterogeneous network uses all the available routes, it is certain to encounter slower
packets and therefore will be unable to operate properly. All current schedulers thus attempt to avoid
slow paths in order to minimise the number of out-of-order packets. This problem was addressed
by the suggested scheduler, which found the gap between the available subflows and then placed
packets on the sender side according to the gaps. This sequencing logic can make these scheduling
requirements happen.

Figure 3. Path Sorting Module

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

6

Sequencing Logic
The FPRS algorithm figures out the range of packet numbers that will be transmitted for each route
such that the packets will be delivered in order and in the shortest amount of time to the receiver
buffer. This path selection technique makes use of the fastest way from all accessible routes, then
counts the packets in order by identifying them by their numbers.

1) Let the selected path is Pj with the lowest arrival time among the N available paths
2) Assume its congestion window is cwndj and round-trip time as RTTj.
3). Determine the number of packets that can be sent by these fast paths and the remaining N-1 paths

during the interval from tslot + rttj. The path rj will appear rtti/rttj times for that interval, and
each time it will send the packets equal to available space in its congestion window. In the same
manner,proposed algorithm determines the number of packets that can be sent by all these N
paths. Let the total number of predicted packets from all these N paths be K.

4). The path rj sends the number of packets equal to cwndj. After this transmission packets will be
reserved on fast paths according to the ratio of RTTs with respect to slow paths.
5) Allot packets for remaining paths according to its RTT time slot availability.Send alloted packets

on all N paths

This allows the FPRS to identify the packets’ numbers along the route very accurately. This method
is implemented in an algorithm, known as FPRS, which is used to schedule packets, as follows.

The description of the Proposed algorithm is defined as follows. The Proposed algorithm considers
a set of all the available paths N from an MPTCP source as an input. It has some local variables that are
initialized with some initial values as shown in lines 1–4. Every time the Proposed algorithm chooses
a fast path P 1 that has minimum arrival time from all available window paths as shown in Path sorting
Algorithm. Lines 12-18 finds sequence numbers for all the paths for first time slot. Lines 10-16 assign
packets for fast path. Lines 19 to 32 finds packets for remaining paths while reserving packets for fast
path. For next time slots Lines 32 to 34 finds sequence of packets for all the paths N . For each delivery,
proposed algorithm find the number of packets with their sequence number for each such path by using
the temporary variables as shown in lines Lines 23-31 .Each time when packets for remaining paths
are calculated, the fast path is reserved first and later packets assigned for remaining available paths.

ILLUSTRATION OF WORKING FUNCTIONALITY OF SEQUENCING LOGIC
The proposed algorithm is presented below. The recommended approach takes as input a list of all
possible MPTCP routes N. It contains numerous special variables that are first initialized with specific
values, and all of the routes’ arrival times are calculated. As shown in, the proposed method selects
the shortest route P 1 with the least arrival time among all possible window pathways. The sequence
numbers for all pathways in the first time slot are then calculated. It then searches for packets for the
other routes, reserving them for the fast path. It determines the packet sequence for all N routes for future
time periods. Using temporary variables, the proposed method estimates the amount of packets and their
sequence numbers for each such route for each delivery. The fast route P 1 benefits as a consequence of
this, since it is able to transmit packets without having to wait for the rest of the pathways to complete,
and all packets arrive in the receiver buffer in the correct order as a result of this. Calculate the total
number of packets and the order numbers for the remaining routes as follows:

We also use an example to demonstrate how the suggested method works. Consider a heterogeneous
network with three paths: p1, p2, and p3. We begin by sorting these pathways in increasing order by
arrival time. Let rtt1=5ms, rtt2=10ms, and rtt3=15ms be the corresponding round-trip times for the
three routes, and let the congestion window for all routes be the same 5. For simplicity’s sake, no in-
flight packets or packet loss on any route. The result of using the proposed scheduler for this scenario
is presented in fig 3

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

7

Indicates that all MPTCP routes are initially accessible at time slot 1 and are ordered in order of
arrival time. The FPRS chooses path P1 because it has the shortest arrival time; the amount of packets
allotted to it corresponds to the congestion window size. The path P1 is used to send packets from
sequence 1 to 5. For the time of rtt1, the congestion window of path P1 becomes unavailable after
transmission (5 ms). FPRS chooses the lowest available path, P2, at that point, but before assigning
packets to P2, it reserves packets 6 – 10 for path P1 and allocates packets 11-15 to path P2. Now
For the duration of rtt2, Path P2 is unavailable (10 ms). So because RTT is 10 milliseconds, FPRS

Figure 4. Sequencing Logic

Figure 5. Allotment of packets to respective paths

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

8

delivers packets from sequence numbers 11 to 15 over route P2 rather than 6 to 10. (i.e., twice RTT
of path r1).. The FPRS expects that route P1 will become accessible in 6-10 seconds and send another
window to the receiver. However, packets 6 to 11 are held in reserve for the path P1 and will be sent
when the path P1 becomes accessible. For each route FPRS determines the order number of packets
ensuring that packets arrive at their destination in the correct sequence and with the quickest time
frame. Likewise, the FPRS chooses the succeeding available path with the lowest arrival time, P3,
and delivers packets with numbers 21 to 25 in line with the free space in congestion window, before
be- coming unavailable for the length of rtt3 (15 ms). Because the RTT gap between Path1 and
Path3 is three times, FPRS reserves packets 16-20 on P1. This procedure is repeated until all of the
packets have been transmitted. After 5 milliseconds, or time slot 6-10, route P1 becomes accessible
and transmits packets from 6 to 10.

In this slot, paths P2 and P3 are not accessible. Path P2 becomes accessible after the following
5 ms, or 10-15, when path P1 has packets 16-20 to send, but before allotting to it, packets 26-30 are
reserved for path P1, and packets 31-35 are assigned to path P2.

The transmitter transmits all the incorrect sequence of data packets being sent to the receiver in
this fashion, while the receiver gets all packets in sequence due to its limited buffer space. P1, P2,
and P3, all begin transmission at the same time. As a result of parallel transmission, there’s a risk that
several packets from separate routes will end up in the same receiver buffer. After 5 ms, the route P1
transmits the packets (packets 6–11), which are also transmitted by the paths P2 and P3 with current
window. As a consequence, certain packets from several paths will arrive in the receiver buffer at
the same time, but they won’t pose a because the receiver will process them in the correct sequence,
there is a HoL blocking issue. If a packet is lost, on the other hand, the FPRS re sends it as soon as
the quickest path becomes available.

Unlike the RoundRobin, LowLatency, schedulers, the FPRS scheduler calculates the amount of
packets along with their order numbers for each path, allowing them to reach the receiver buffer in
sequence . The FPRS is different with respect to existing schedulers, in that it estimates packets for all
the paths more accurately than the others. It takes less time to finish than other schedulers because it
never waits for the quickest path to send packets to be- come available, like ECF does. The FPRS and
BLEST are com- pared in two ways:If the quickest route is not accessible at the time of transmission
but can finish the broadcast before another path, the fastest path should be used, BLEST prioritizes
the fastest path. As a result, the second most efficient technique of sending packets in order to the
receiver buffer is underused. FPRS estimates the number of packets that will be transferred over the
fastest route when there is no space left in the congestion window of that route and

that route can complete the transfer faster than the other available routes. The FPRS then allocates
packets to the chosen route by by- passing as many packets as the fastest route has projected without
queuing for the fastest route.As a consequence, the FPRS utilizes all of the routes’ bandwidth and
sends data to the receiver buffer in order. It has a greater good put compared to BLEST and can
transmit data in less time.

FPRS performs better in means of throughput and download time. The amount of accessible
pack- ets and the number of sluggish routes have no effect on its performance. However, because of
the packet prediction for each path, this scheduler has a disadvantage in that it necessitates additional
pro- cessing. The FPRS predicts the packets that will be sent along that route in the future. Even if it
does not have a congestion window available at the time and has a lower arrival than the chosen path.

EXPERIMENTS & EVALUATION
FPRS scheduler is implemented in the MPTCP Linux kernel Neira-Ayuso et al. (2020) in this study, and
its result is evaluated to that of other schedulers currently available today. To evaluate the performance
of several schedulers three real test beds (4G Wi-Fi test bed, WiFi-WiFi test-bed, and wired-wireless
test-bed) are used. Multipathing is made possible by concurrently transmitting data over two networks,
Ethernet and LTE/Wi-Fi. As shown in Fig 5-7 these two networks are linked to the receiver network

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

9

via two different gateways via a router. The iperf3 client is used to generate traffic on the sender side.
In the first test-bed, a laptop (Dell laptop equipped with Intel® core TM i- 7 4590 CPU @ 3.6 GHz and
20 GB of memory) is linked to a server (Intel core i7-7700 processor @ 3.6 GHz and paired with 64
GB of DDR4 RAM.) via Wi-Fi and Wi-Fi, as shown in fig 3. Both have MPTCP enabled Linux Kernels
and MTCP versions of 4.19.105 and mptcpv9, respectively. The iperf3 client is used to generate traffic.
Each scheduler generates constant bit rate traffic for 200 seconds iterative. As shown in Fig 6, the second

Figure 6. WiFi-WiFi Network Testbed

Figure 7. WiFi-Lte Network TestBed

Table 1. Network Specifications

Interface Rate RTT

LTE 16 Mbps 70ms

Wi-Fi 15mps 60ms

Ethernet 80mbps 10ms

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

10

test bed connects two devices (MPTCP client and MPTCP server) via two interfaces (cellular network
(4G) and Wi-Fi). Ubuntu 14.04 is installed on both machines.MPTCP Schedulers generate constant bit
rate traffic for 200 seconds by iterative manner, and experiments are repeated many times. The dataset
is created by issuing the iperf command from the terminal. These readings are recorded using the SS
command. Finally, MPTCP Schedulers are compared using statistical graphical analysis with the R Tool.

In order to accurately compute the route bandwidth and round- trip time, the test-beds are designed
in such a way that we must explicitly calculate them, as previously mentioned.

To evaluate FPRS performance in a real-world test-bed, we create different cases by varying the
schedulers, test cases, and with different networks as shown in Table 1. Throughput, download time,
and path utilization are used as performance metrics for FPRS performance.

The client sends an HTTP request to the server to download the data in all three test-beds. After
receiving the client request, the server produces the traffic that is delivered via Iperf. The throughput of
all packet schedulers (MinRtt, Blest, Redundant, Roundrobin, and FPRS) over test beds are displayed
in Fig 7-9 after successful data transmission in each scenario.

The FPRS scheduler outperforms in every situation, as these figs demonstrate. This happens
be- cause the FPRS chooses packets for each path in such a way that they arrive to the receiver in the
correct order and with minimal delays.

In this section, we will examine how the Multipath TCP schedulers Perform in regards of download
time. Figure 10 shows the download time for each scheduler for a variety of data volume configuration.
It has been highlighted that, even though scheduling approaches may differ on the delivery time-

frames, they all ultimately supply the data. In a 4K,200K,300K,1000K, and 256MB data volume
scenario, the FPRS scheduler gives the quickest delivery time of roughly 34 milliseconds, 40

millisec- onds, 55 milliseconds, 100 milliseconds, and 32 seconds. Because of the relationship
between these two items, this dilemma occurred. Once packets become out of order owing to the
utilisation of nu- merous networks, the RTT values begin to grow and become less appealing to the
scheduler. Thus, the Scheduler, which contains the fastest network download time of the four tested
scheduling strategies, may bypass heterogeneity like the FPRS. The data is delivered in 42 seconds
using the round-robin mechanism. It has poor reaction times to the failure and recovery of interfaces,
as it continues to send data to interfaces even if they’re afflicted with long round-trip times. The most
inefficient overall deliv- ery time (approximately 52 seconds) is accomplished using the redundant
approach. This is due to the surplus data eating up space. FPRS has a shorter flow completion time
than all other packet schedulers,

Figure 8. WiFi-Ethernet Testbed

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

11

Figure 9. Throughput Comparison in Homogeneous Networks

Figure 10. Throughput Comparison in Heterogeneous Networks

Figure 11. Throughput Comparison in Heterogeneous Networks

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

12

suggesting that MPTCP with FPRS transports data files more quickly than any other packet
scheduler. Thus, we can see that FPRS solves the HoL blocking problem by ensuring that packets
are sent to the receiver buffer in the proper sequence. When compared to existing schedulers, it
provides higher

throughput with shorter completion times, and all paths are utilized.
The results of our investigation into the influence of path heterogeneity on the range of traffic

transmitted on each path are shown in this section. As the RTT of both pathways fluctuates, Figures 11
and 12 show the percentage of traffic sent via the major and secondary channels, respectively. As the
RTT on path 2 grows, traffic is nearly exclusively diverted to path 1, which has a lower RTT. This is
due to the path selection method employed by the default and Blest schedulers, which favor pathways
with lower RTT. Both pathways, however, carry the same amount of traffic in the FPRS scheduler.

Figure 13. Path Utilization of Schedulers in Wifi-Ethernet Scenario

Figure 12. Download Time of Schedulers with different data volumes

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

13

DISCUSSION
When contemplating the architecture of a new multipath protocol’s scheduler, path heterogeneity
should be seen as the norm rather than the exception, since it is crucial to the scheduler’s ultimate aim
of op- erating in millions of Internet devices independent of the applications running on top. Even
though the destination host has just one Multipath TCP subflow, it may take various routes, leading
to varying latency, bandwidth, and loss. Since it’s only important to look at various network routes
when the network has paths belonging to multiple technologies, such a smartphone with WLAN and
a cellular network interface, it’s unnecessary to examine path heterogeneity. Path heterogeneity may
cause the receiver to get blocked by a host of hosts, which might impair MPTCP’s overall performance.

Also to alleviate HoL-blocking, we have developed and thoroughly tested alternative scheduling
methods. Though all options delivered satisfactory results in certain cases, none was effective across
all situations and with all apps. And thus we have devised a new kind of scheduler, FPRS, which
makes use of Fast Path Reservation. Unlike prior solutions, FPRS (Fast Path Reservation Scheduler)
analyses the potential HoL-blocking value to minimise, and uses it to schedule packets across all
subflows according to their RTT gaps. They reorder packets at the sender side, making sure they
arrive in sequence at the recipient. Thanks to this, we were able to create a more comprehensive,
proactive scheduling metric to get rid of any punishment.

We next tested FPRS in a real network, as is described in Section 4. By conducting a comparison
between FPRS and schedulers, we found that FPRS outperforms all algorithms in each of the situations
given, accomplishing its objective of decreasing the occurrence of HO-blocking and thus reducing
false retransmissions. These improvements lead to more accurate application performance estimates,
shorter completion times, and a reduced end-to-end latency.

We think that FPRS will adopt the correct approach to scheduling for diverse situations in the
future. Even yet, further analyses that take into account other forms of diversity, such as alternative
network access methods, diverse application performance measurements, and other mobility situations,
are required.

CONCLUSION
A novel MPTCP packet scheduler, the Fast Path Reservation Scheduler (FPRS), is proposed in
this paper, which provides in- order delivery while still offering enhanced throughput., reduces the
HoL stalling problem, has a shorter completion time, and makes use of all available paths, among
other things. The FPRS scheduler picks packets to every path in a such a way that they reach in the

Figure 14. Path Utilization of Schedulers in Wi-Fi-Lte Scenario

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

14

receiver buffer in the sequence in which they were sent and with the shortest completion time that
is possible. In this study, We evaluated the FPRS packet scheduler with other schedulers. Against
all other Linux kernel schedulers by using a variety of network interfaces. In comparison to prior
schedulers, It out- performs them by solving the fundamental problems of out-of-order data packet
delivery and Head Of Line blocking.

FUNDING AGENCY
The publisher has waived the Open Access Processing fee for this article.

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

15

REFERENCES

Apple. (2017). Advances in networking. Proc. Worldwide Developers (WWDC).

Baidya, S. H., & Prakash, R. (2020). Improving the performance of multipath TCP over heterogeneous paths
using slow path adaptation. In 2014 IEEE International Conference on Communications. ICC.

Barre´, S., Paasch, C., & Bonaventure, O. (2011). Multipath TCP: from theory to practice. International Conference
on Research in Networking, 444–457.

Chaturvedi, R. K., & Chand, S. (2018). MPTCP Over Datacen- ter Networks. Second international conference
on inventive communication and computational technologies (ICI-CCT), 894–898.

Ferlin, S. (2016). BLEST: Blocking estimation-based MPTCP scheduler for heterogeneous networks. IFIP
Networking Conference (IFIP Networking) and Workshops.

Frogmen, A. (2016). ReMP TCP: Low latency multipath TCP. IEEE International Conference on Communications
(ICC).

Guo, Y., & Ethan (2017). DEMS: Decoupled multipath scheduler for accelerating multipath transport. Proceedings
of the 23rd Annual International Conference on Mobile Computing and Networking. doi:10.1145/3117811.3119869

Handley, C., Raiciu, A., Ford, J., Iyengar, S., & Barre. (2020). RFC 6182 - Architectural Guidelines for Multipath
TCP Development. Tools.ietf.org, 19–19.

Hurtig, P., Grinnemo, K.-J., Brunstrom, A., Ferlin, S., Alay, O., & Kuhn, N. (2018). Low-latency scheduling in
MPTCP. IEEE/ACM Transactions on Networking, 27(1), 302–315. doi:10.1109/TNET.2018.2884791

Hwang, J., & Yoo, J. (2015). Packet scheduling for multipath TCP. Seventh International Conference on Ubiquitous
and Future Networks. doi:10.1109/ICUFN.2015.7182529

Kimura, B. Y., Lima, D. C., & Loureiro, A. A. (2020). Packet Scheduling in Multipath TCP: Funda- mentals.
Lessons, and Opportunities, 15, 1445–1457.

Kuhn, N., Lochin, E., Mifdaoui, A., Sarwar, G., Mehani, O., & Boreli, R. (2014). DAPS: Intelligent delay-aware
packet scheduling for multipath transport. 2014 IEEE International Conference on Communications (ICC),
1222–1227. doi:10.1109/ICC.2014.6883488

Lim, Y. S. (2018). ECF: An MPTCP path scheduler to manage het- erogeneous paths. Proceedings of the 13th
International Conference on Emerging Networking Experiments and Technologies, 201–201.

Neira-Ayuso, P., Gasca, R., & Lefevre, L. (2020). Communicating between the kernel and user-space in Linux
using Netlink sockets. Software, Practice & Experience.

Paasch, C. (2013). Experimental evaluation of multipath TCP schedulers. Proceedings of the 2014 ACM
SIGCOMM.

Raiciu, C. (2012). How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP. 9th USENIX
Symposium on Networked Systems Design and Implementation.

Scharf, M., & Kiesel, S. (2006). NXG03-5: Head-of-line Blocking in TCP and SCTP: Analysis and Measurements.
IEEE Globecom Workshops, 1–5. doi:10.1109/GLOCOM.2006.333

Shi, H., Shi, H., Cui, Y., Wang, X., Hu, Y., Dai, M., Wang, F., & Zheng, K. (2018). STMS: Improving MPTCP
throughput under heterogeneous networks. USENIX Annual Technical Conference, 719–730.

Yang, F., Wang, Q., & Amer, P. D. (2014). Out-of-order transmission for in-order arrival scheduling for multipath
TCP. 28th International Conference on Advanced Information Network- ing and Applications Workshops.

http://dx.doi.org/10.1145/3117811.3119869
http://dx.doi.org/10.1109/TNET.2018.2884791
http://dx.doi.org/10.1109/ICUFN.2015.7182529
http://dx.doi.org/10.1109/ICC.2014.6883488
http://dx.doi.org/10.1109/GLOCOM.2006.333

