
DOI: 10.4018/IJICTHD.299412

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Adaptive Cache Server Selection
and Resource Allocation Strategy
in Mobile Edge Computing
Michael Pendo John Mahenge, Department of Informatics and Information Technology, Sokoine University of Agriculture, Tanzania*

Edvin Jonathan Kitindi, Department of Informatics and Information Technology, Sokoine University of Agriculture, Tanzania

 https://orcid.org/0000-0003-0413-5757

ABSTRACT

The enormous increase of data traffic generated by mobile devices emanate challenges for both internet
service providers (ISP) and content service provider (CSP). The objective of this paper is to propose
the cost-efficient design for content delivery that selects the best cache server to store repeatedly
accessed contents. The proposed strategy considers both caching and transmission costs. To achieve the
equilibrium of transmission cost and caching cost, a weighted cost model based on entropy-weighting-
method (EWM) is proposed. Then, an adaptive cache server selection and resource allocation strategy
based on deep-reinforcement-learning (DRL) is proposed to place the cache on best edge server closer
to end-user. The proposed method reduces the cost of service delivery under the constraints of meeting
server storage capacity constraints and deadlines. The simulation experiments show that the proposed
strategy can effectively improve the cache-hit rate and reduce the cache-miss rate and content access costs.

Keywords
Cache Server Selection, Content Delivery, Content Service Provider, Cost Effective, Deep Reinforcement
Learning, End User, Mobile Edge Computing, Resource Allocation

INTRODUCTION

The enormous improvement of smart mobile equipment is considered to be significant in this era of big
data development to enable access to delay-critical and resource-intensive mobile applications such as
video-on-demand (Tran et al., 2017). While facilitating vast potential for offering anywhere and anytime
accessibility, vast amount of data generated by mobile equipment emanates great burden to the core
network due to huge increase of data traffic that is expected to grow multi-fold in the future(Cisco, 2016;
Jaleel et al., 2010). The enormous increase of data traffic emanates challenges for both Internet Service
Providers (ISP) and Content Service Provider (CSP). The ISP strive to provide quality services along
with minimizing operational expenses such as internet access costs. On the same vein, CSP strive to
enhance quality of experiences (QoE) for end users in-line with achieving cost-efficient content delivery.

Cloud computing as an internet-based computing has been considered important in providing quality
services and handling big data processing (Skourlelopoulos et al., 2017). Consequently, large CSP such as
YouTube, Facebook, or Twitter store their content in massive data centers in the cloud. Also, the advanced
features of the cloud computing such as elastic assignment of resources on-demand, and unlimited resources
for processing and storage, guarantees substantial capacity to deal with huge amount of data emanating

https://orcid.org/0000-0003-0413-5757

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

2

from mobile applications (Pompili et al., 2016). However, due to multi-hop communication between
mobile equipment and remote servers, legacy systems such as mobile cloud computing (MCC) still face
performance challenges. In the traditional content delivery network (CDN), the mobile devices form the
frontend and the CDN servers are deployed at the backend. Each mobile device is associated with a nearby
base station (BS) or access point (AP) for internet access services. Each content request received at the
BS, is forwarded to the CDN through core network, retrieve the requested content and respond back to the
requesting user. However, the overwhelming evolution of resource-intensive applications with low-latency
requirement emanates challenges in the traditional CDN in terms of network overloading, high service
utility cost, and inadequate service quality (Tran et al., 2017).

Recently, emerging computing paradigm such as MEC that provides cloud computing facilities at the
vicinity of mobile users has been proposed (Hu et al., 2016). MEC has been considered as a significant
computing paradigm to mitigate challenges emanating from the immense pressure created by resource-
intensive mobile applications (Tran et al., 2017). Meanwhile, mobile edge caching deployed at the BS of
mobile network is proposed as a novel and promising architecture that bring contents at the proximity of
the content service requesters (Wang et al., 2014). This novel architecture offers substantial opportunity to
achieve cost-efficient content delivery through caching mostly accessible contents closer to users (Zhao
et al., 2016). Therefore, CSP could benefit through Infrastructure-as-a-service (IaaS) offered by MEC
which guarantee scalability, low service delivery cost, high performance, location-awareness, and low
delay. While mobile users could benefit from enhanced QoE achieved through content caching at the
BS or AP. Moreover, MEC cooperative capability offers potential opportunity to improve QoE through
cooperation between BSs and the central cloud (Tran et al., 2017). Despite the unique contributions
offered by mobile-edge caching, the limited cache storage capacity at the BS become stumbling block to
efficiently deal with the enormous pressure triggered by latency-critical and resource-intensive mobile
applications (Tran et al., 2017). Also, varying application and users’ preferences, heterogeneity of MEC
computing instances, and limited MEC resources such as bandwidth and power, intensify cache server
selection and resource allocation problem.

Some existing works proposed deployment of edge-caches without considering the unique
characteristics of edge devices such as limited resources and varying computing capacity (Pantisano
et al., 2014; Bastug et al., 2015; Bharath et al., 2016). Moreover, the existing works focused on cache
placement optimization autonomously among one edge-cache and CDN servers or among several edge-
caches. However, the proposed approaches can face challenges such as high cache-miss rate and low
probability of cache-hit due to limited caching capacity. Consequently, the chance to utilize backhaul
link become high because many requests would be forwarded to the remote CDN thus failing to achieve
the required QoE due to high transmission cost and latency especially for delay-sensitive applications.

Therefore, to guarantee cost-efficient service delivery, in this paper an adaptive cache server selection
and resource allocation scheme in MEC environment taking into account both caching and transmission
costs is proposed. The key objective of this paper is to find out the cache placement design that selects the
best cache server for caching taking into account storage cost and transmission cost along with satisfying
capacity constraint and delay requirements. To trade-off between content transmission cost and caching
resource renting cost, the weighted cost model is formulated. Then, an efficient adaptive strategy based
on deep reinforcement learning (DRL) is proposed to achieve optimal content caching decision.

The unique contributions of this paper are three-fold as follows: initially, a cache server and
resource allocation in MEC-assisted architecture is formulated as a weighted cost model to balance
the transmission cost and caching resource renting cost. Then, a novel adaptive caching decision
scheme that leverages the advanced capability of DRL is proposed to guarantee optimal service
delivery cost while meeting latency and caching capacity constraints for content delivery in MEC
environment. Through simulations, the proposed strategy demonstrates significant improvements in
terms of average rewards, cache-hit rate, cache-miss rate, and access latency.

The remaining sections of this paper is structured as follows: section “caching model in mobile
edge computing” describes the caching models, and section “the proposed adaptive cache server

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

3

selection and resource allocation strategy” expound the proposed methodology. Section “performance
evaluation” presents the analysis of experiment results to evaluate the performance of the proposed
strategy, and finally, section “conclusion” presents the conclusion and proposes future works.

CACHING MODEL IN MOBILE EDGE COMPUTING

This section demonstrates the system model. The details of the network model, service utility model,
and problem formulation are given in the following subsections.

Description of the Caching Scenario

In this paper, the set of cache-capable BSs is denoted as � = …{ }1 2, , C , where the caching capacity
of each BS is ϕ

i
. Furthermore, we assume each BS comprises of controller and cache manager. The

controller which can be a powerful machine or server cluster manages edge nodes and requests arriving
at each BS. Specifically, it is responsible for handling each request arrival, request scheduling, and
communication with cache manager or computing servers in its locality and controllers in other areas
within cooperative space. The cache manager is responsible for cache management activities such as
content placement and replacement based on the implemented caching policy. Moreover, its critical
role is to keep track of resources and cached contents in each BS and update them regularly. The
content-caching optimizer is part of the cache manager which deals with cache management decisions
making to efficiently utilize the available resources through scheduling and placing contents in suitable
locations. Therefore, the controller and content-caching optimizer can exchange messages to one
another synchronously to achieve efficiency cache management processes. Additionally, the advanced
features of MEC such as cooperative resource allocation for offloading and caching guarantee optimal
resource utilization, less costs and service delivery delay, and enhance QoE (Mahenge et al., 2019).

Moreover, as shown in Figure 1, an agent perceives the caching-environment and acquires input
signals such as user inquires and network condition. The acquired inputs can be gathered and form
the state S

t
 that is used as the input for training neural network (NN). Based on the learning output

and caching policy, an agent chooses an action a
t() that indicates caching of content to the subsequent

slot. The resultant performance based on the chosen action is then perceived and the reward fed back
to the learning agent. The agent utilizes the received feedback to train and enhance the NN model
with the objective of maximizing the entire rewards.

Caching Network Model
In the system model, MEC-based caching paradigm with multiple edge-caches deployed at the BSs
of mobile network is considered. It is assumed that the BSs connect with one another through backhaul

Figure 1. Components of the proposed system model

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

4

connection, while end users are connected to the closest BS through wireless communication link.
Let the finite set of users be denoted as Φ = … …{ }1 2, , , ,u N , where each user is associated to a
closest base stations (BS) or access points (AP) depending on its connectivity strength. The edge-
caches in the MEC-based caching system can be configured at the BSs located in various areas. The
capacity of each BS to deliver services is limited by the coverage region and resources. The set of
cache-capable BSs is denoted as � = …{ }1 2, , C , where the caching capacity of each BS is ϕ

i
. Let

K +1 indicates the catalogue of the available content provider’s in the CDN,  = …{ }1 2, , ,
represents the finite set of contents with size s

k
 (MB) that are accessible by users in the Internet.

In the considered scenario, it is assumed that the memory units (in GB) with caching capacity of
ϕ
i
 are deployed in each BS whereby the CSPs can rent for placement of contents at the proximity of

end users. Therefore, the total cache capacity in all BS within the cooperative domain is expressed as:

ϕ ϕ
t

i

C

i i
= ∀

=
∈∑

1

,
�

	 (1)

Moreover, it is considered that each BS can receive multiple caching inquiries, therefore let r
u

be the caching resources required to store content k at the BS i ∈ � . Furthermore, if µ

ui
 denotes

the inquiries for data caching received at a particular BS i ∈ � , then, the total caching inquiries
become �

u
ui i

∈
∀∑ ∈

Φ

µ
, �

. According to Nguyen & Vojnovic (2011), the BS can allocate resources to multiple

requests grounded on weighted proportional distribution whereby the portion of caching resources
allocated for each request can be computed as:

r
u t

ui

u ui

i
= ∀

∈

∈

∑
ϕ

µ

µ
Φ

,
�

	 (2)

Let χ
kij

 be the cache decision variable with the content placement matrix defined as:

χ
kij

if content k is cached at the BS i or j in the col
=

1, llaborative space

otherwise

 0,








	

Therefore, given the capacity constraint ϕ
t
, the overall rented cache space must satisfy the

achievable policy expressed as:

k i

C

u kij t u
r i j

= =
∈∑∑ × ≤ ∀ ∈

1 1



χ ϕ , ,,Φ � 	 (3)

Service Utility Cost Model
The service utility cost model is computed by data storage cost, and data transmission cost.

Data Storage Cost

Let C
k

 denote the unit cost for renting caching resources on the specific location which can be defined as:

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

5

C
Cost if thecontent iscachedat theBS

Cost if thek
e

c

=
,

, ccontent iscachedat theremoteservers� � � � � �








	

Let R k() be the integer such that R k() > 0 which denotes the number of cache servers with
the content k . For example if R k() = 1 , signifies that the content k is cached in only one cache
server. Therefore, the total caching resources rental costs C

s() can be calculated by:

c C s
s

i

R k

j
kij k k

= × ×










=

()

∈
∑ ∑
1 �

χ 	 (4)

Content Transmission Cost

Let d
ke

 denotes the unit costs for transmission of content k from the edge-cache servers within the
cooperative domain. Also, let d

kr
 denotes the unit costs for transmission of content k from the remote

servers in the cloud. Therefore, the transmission cost C
t() for serving user requests can be calculated as:

c
X d s

d X
t

i

C
kij ke k

ij j

K

kr kij
=












+ −() −

= =

+

∑ ∑
1 1

1

1 1
* *


ΠΠ
k() 	 (5)

where 
ij

 is the bandwidth, and Π
k
∈ 


0 1, is the popularity of each content k which represents the

probability of caching content k at the BS. Then, the probability that content k is not cached at the
BS is given as 1−()Πk . The content with higher probability has high chance to be cached at the BS.

Problem Formulation
In mobile edge caching application scenarios, the system cost can be contributed by many factors.
In this study, the authors considered two metrics that includes first, the cache renting cost for storing
contents proximate to users and second, the transmission costs incurred for service delivery. Therefore,
in order to trade-off between content transmission cost and caching resource renting cost, the system
cost incurred for serving all user requests is defined as the weighted cost model expressed as:

 c c c c
s t

j

n

s s j t t j
,

, ,() = +()
=
∑

1

ω ω 	 (6)

where parameter ω is a weight that balance between caching cost and content transmission cost, n is
the number of requests received by the system. The CSPs prefer low operational costs such as renting
caching resource while satisfying users’ preferences. Similarly, users prefer quality services with low
service delivery cost and high QoE. The key objective of this chapter is to minimize the overall cost
taking into account caching cost and transmission cost that is defined by the following objective function:

n

min
s t
c c{ } ()  , 	 (7)

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

6

s.t.
i

n

u kij t
r

=
∑ × ≤
1

χ ϕ 	 (8)

i

n

kij
R k

=
∑ ≤ ()
1

χ 	 (9)

c C
t
≤

max
	 (10)

The objective function (7) maximizes QoE while satisfying the given constraints (8) to (10).
The expression (8) is the capacity constraints that ensures that the allocated resources for content
caching cannot exceed the available storage capacity, the expression (9) guarantees that selection of
cache server to handle user’s request should not exceed the number of cache servers available, and
expression (10) guarantees that the transmission cost cannot exceed the threshold cost for each request.

THE PROPOPOSED ADAPTIVE CACHE SERVER SELECTION
AND RESOURCE ALLOCATION STRATEGY

In this section, cache placement strategy is formulated as Markov Decision Problem (MDP), such that
the recent cached content is determined by the preceding state and action. The following subsections
present the theoretical background, settings and design of the proposed methodology.

Theoretical Context
This subsection presents the theoretical background of the proposed methodology based on Deep
Reinforcement Learning (DRL). In DRL approach, there are three (3) key concepts that include: states,
actions, and rewards. The states are the representation of the current situation or tasks that the learning
agent observes from environment while the actions are the possible deeds that the learning agent can
do to adjust these states to meet the optimization objective. The rewards are the returns that the learning
agent receives for executing the right action. In this paper, the set of the state-space is represented by
S s s s s

t
= …{ }1 2 3

, , , , , and the set of the action-space is represented A a a a a
t

= …{ }1 2 3
, , , , respectively.

Also, r
t
 denotes the reward for selecting an action a

i
 where i t= …1 2, ,� � . The action is a key contributing

factor that affect rewarding decision for both the present reward r
t() and succeeding reward r

t+()1 . The
transition from r

t
 to r

t+1 can be achieved through reward-function and the state-transition probability
P s s a

t t t+()1
| , . The actions that efficiently incline towards the optimization objective has high chance

to be selected by an agent. Initially, at the state s S
1
∈ the learning-agent performs an action a A

t
∈

at tth selection epoch and transfers the present state s S
t
∈ to s S

t+ ∈1 with a probability distribution
P . Consequently, the agent gains a reward r to assess the performed action. Thus, the transit probability
and r can be represented as function expressed as P s a s

t t t
, , +()1 and r s a s

t t t
, , +()1 respectively. Assume

that the action a
t
 is performed based on the stochastic strategy defined as Π a s P a a s s

r t t
| |() = = =() .

The agent learns and evaluate the strategy Π a s|() defined as a mapping in the state s
t
 to a probability

of selecting an action a
t
. Let 

t
 denotes the return which represents the aggregate rewards given by:


t

k

k
t k
r=

=

∞

+∑
0

ψ 	 (11)

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

7

where ψ ∈ ()0 1, is a discount factor. Given the strategy Π a s|() , the state-action expression can be
defined as:

Q s a E a a s s
t t t

π , ,() = = =



 Π 	 (12)

Then, to determine the best Q-value Q s a
t t

* ,() , the Bellman-optimality method proposed in [149]
can be adopted. Mathematically, it can be expressed as:

Q s a E Q s a s ar
t t t a t t t tt

* , , ,max |() = + ()



+ + +ψ

1 1 1
	 (13)

However, due to large space in S , computing all values of Q using Bellman method become challenging.
Moreover, Q-learning is an appropriate and effective algorithm adopted to solve Markov-decision optimization
problems. However, the key challenge reported in the literature is the limited storage capacity of the Q-table
which is considered to be a limiting factor in addressing problems with large S and A (Kan et al., 2019).
Therefore, other effective methods such as neural network can be employed to estimate and evaluate the
value-function in Q-learning approach. Algorithm 1 presents the main algorithmic steps.

Furthermore, in order to guarantee efficiency, steadiness and improved convergence-speed of
the algorithm, deep Q-network approach with improved features such as experience-replay, value-
function estimation, and target Q-network is adopted. The algorithm takes the state-values as input
to the neural-network, then proceed with the training phase through Multi-Layer Perceptron (MLP).
Finally, it returns the Q-value serving as a basis for selection of an actions.

The key procedures of algorithm 1 start with configuration and initialization of parameters such as
the feature space s

t
, weights θ t() of the neural-network, temporary storage φ to keep track of experiences,

Q-network parameters, and the number of state transition k (Algorithm 1 line 1-6). Then, proceed with
iterative process to choose the current action based on the given state and selection strategy, assess the
Q-values for the present state-action couple s a,() , observe the succeeding state s

t+1 and the reward r
t

(Algorithm 1 line 7-14). Consequently, store the tuple  = +s a r s
t t t t
, ,,

1
 in the temporary storage φ

referred as the experience-replay (Algorithm 1 line 15). The experience-replay technique addresses the
fluctuations and deviation problems emanating from correlation among the experience data. Moreover,
if samples in φ are sufficient, the samples  of a mini-batch of  from φ are randomly selected to
train the DQN algorithm using a gradient-descent method and approximate the Q-values (Algorithm 1
line 16-20). Finally, the algorithm updates the variable θ of the mini-batch sample to optimize the loss
function, and terminates the loop if the termination criteria is met (Algorithm 1 line 21-23).

Important Configurations of the Proposed Algorithm
In this paper, the key objective is to reduce the caching cost and content transmission cost simultaneously,
thus to tradeoff between the two optimization goals, a linear-weighting-method is used to guarantee
accurate weight distribution and improve caching decision. Thus, the entropy-weight-method (EWM)
is adopted to govern the weight distribution of caching cost and transmission cost (Delgado & Romero,
2016). Let p denote the number of samples in EWM referred as the number of the chosen actions; q
denote the number of objectives considered for optimization, where in this paper the caching cost and
transmission cost are considered as indicators, thus the value of q in this case is 2 .

Let the y
i j,

 denote the measured value of the ith indicator in the j th sample. Then, the initial
step in EWM is to normalize the indicators. In this paper the authors use min-max mathematical
model expressed as:

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

8

y
y y y

y y y y
i j

i j j p j

j p j j p j

,
* , , ,

, , , ,

min , ,

max , , min , ,
=

− …{ }
…{ }− …

1

1 1{{ }
	 (14)

where y
i j,
* is a normalized parameter, i p= …1 2, , , , and j = 1 2, . Then, the ratio of individual

sample value in different indicators can be defined as:


i j

i j

i

p

i j

y

y
,

,
*

,
*

=

=∑ 1

	 (15)

The entropy value of each indicator in EWM can be obtain by the following mathematical model:

Algorithm 1. Deep-Q network algorithm

Input: State value
Output: Action value
1: Set feature space s

t

2: Set temporary Storage φ that keeps track of experiences with capacity N
t

3: set the Q-network variabale with θ
4: set the Q-value functionQ s aθ ,() and the Stochastic strategy Π a s|()
5: Initialize the weights θ t() of the neural-network where t n= …1 2, , ,

6: Set k , the number of State-transition to 0 and k
max

 to a large number
7: for episode 1 to n , do
8: Initialize the initial state s
9: for t t T t= ≤ ++1; ; , do
10: Select action a

t
, with respect to the present state s

t
 and strategy Π a s|()

11: otherwise
12: choose a argmax Q s a

t a t
* , ;= ()θ

13: assess the Q-values for the present state-action couple s a,()
14: observe the succeeding state s

t+1 and the reward r
t

15: store the tuple  = +s a r s
t t t t
, ,,

1
 in φ

16: generate the samples  of a mini-batch of  from φ randomly
17: for each sample h ∈  , do

18: execute a gradient-descent method on y Q s a
h t

h
t
h− ()(), ;θ

2

19: end for
20: return Q-value
21: update the variable θ of the mini-batch to optimize the loss-function
22: end for
23:end for

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

9

E
pj

i

p

i j i j
= −

() ()
=
∑

1

1ln
ln

, ,
  	 (16)

Finally, the weight ω
i() of each parameter can be obtained using the following mathematical model:

ω
j

j

j

q

j

j

i j

E

q E

E

E
=

−

−
=

−

−
= =∑ ∑

1 1

2
1 1

2
	 (17)

Considering the present requested content and the present cached content as the state-space S , each
state s

t
 is represented as feature vector. Let ξ

k
 denotes the features of each caching resource, the state

vector can be expressed as s
t C
= …{ }ξ ξ ξ ξ

0 1 2
, , , , where ξ

0
 denotes the feature vector of the recently

inquired content, and ξτ represent a feature vector of the τth cached content, that is to say τ = …1 2, , ,C .
The DQN algorithm is used to achieve the optimization objective. Therefore some elements of the

algorithm are customized and redefined to suit the formulated optimization problem. Subsequently,
the weighted sum of caching cost and transmission cost of the requested content from each edge node
is considered as the state, and the state-space is redefined as:

S s s s s c c
p i i s i t

= …{ } = +
1 2 1 2
, , , ,

, ,
ω ω 	 (18)

Similarly, since this paper addresses the cache server selection and cache resource allocation
problem in MEC, the choice of the cache server is considered as the action where the cache server
is located at the BS. The action-space is redefined as, A cnode cnode cnode

k
= …{ }1 2

, , , where k
is the number of cache servers at the BS. Moreover, the rewards is considered in terms of system cost
and can be obtained using the following mathematical model:

r c c
t s s j t t j
= − +()ω ω

, ,
	 (19)

Therefore, define a tuple  = +s a r s
t t t t
, ,,

1
 as the temporary storage that keeps track of experiences

with πth tuple of experience example. Let θ be the network-target variable and φ be the experiences
stored in  tuples, the target-value of Q can be obtained as V r max Q s a

Q t a t tt

* = + ()
+ + +ψ θ1 1 1

, and

Q s a
t t
,() is the current-value of Q denoted as V

Q
. Therefore, the loss-function,  θ() can be defined as:

 θ φ() = −



E V V

Q Q
*

2
	 (20)

To compute  θ() for each iteration, first, the neural network and an adaptive learning rate λ πt,
is adopted. Then, a gradient-descent approach is used to update the variable θ as expressed by the
following mathematical model:

�θ π θλ= −



t Q Q Q

V V V
,

*  	 (21)

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

10

where θ represents the partial derivative with respect to θ .
The advantages of DRL adopted in this paper includes but not limited to: first, by leveraging

advanced capacity of neural networks for storage, addresses the challenge of limited storage capacity of
the Q-table in traditional Q-learning which is considered to be a limiting factor in addressing problems
with large state and actions. Second, using deep Q-network approach with improved features such as
experience-replay, value-function estimation, and target Q-network, guarantees efficiency, steadiness
and improved convergence-speed of the algorithm Third, adjusting the parameters of Deep Neural
Network (DNN) and learning the popularity structure of the contents achieves superlative long-term
performance optimization.

PERFORMANCE EVALUATION

This section presents the performance evaluation of the proposed strategy. The remaining subsections portray
the experimental design and configurations, comparison algorithm, and experimental results and analysis.

Experimental Design and Configuration
The dataset used in our experiments comprises of two chunks. Initially, we used the analytical content-
request model following Zipf-distribution to generate datasets for user’s requests. In the simulation
experiment, the probabilistic distribution was used to get samples based on the requested content identifiers.
It is assumed that a random probability is used for each service requester at the edge requesting content k
from the system. The probability of selecting k from the library determines the popularity of k. Specifically,
the probability of requesting the kth content (most popular) can be obtained using the expression:

P k

n

k

n

F
=

=∑

1

1
1

α

α

	 (22)

where α is the Zipf-distribution skewness parameter. The content library is set to 10000 files with
similar size set to 3.5 MB for each file. Initially the data sets generated with fixed value of α = 0 74. ,
and then, the value of α varied in the range 0 4 1 4. , .



 . The number of user’s requests were randomly

generated between 100 to 100000 requests. The extracted features (number of requests) used as the
inputs of the neural network. In this work, the features represent the latest 10, 100, and 1000 requests.
Similar to He et al. (2019), the size of temporary storage φ is set as 10000, the min-batch size is set
to 32, and 256 neurons were considered for neural network training. The adaptive-learning rate is
considered to be 1 0 10 1 0 10 1 0 103 4 5. , . , .× × ×{ }− − − and thereafter it was fixed to 1 0 10 3. × − for the
remaining simulations. The number of cache-capable BSs is set to 10 and the number of users
requesting contents is randomly and evenly distributed with an average of 50 users in each BS. The
average access cost for cached content k at the BS Cost

e() or remote servers Cost
c() are set to 6

and 63ms . The average transmission cost are assigned randomly and evenly distributed between 10
to 30ms for transmission between one MEC server to another, and 60 to 100ms between MEC
server and remote cloud. Table 1 presents the parameter setting of the edge devices.

Comparison Algorithm
The performance of the proposed strategy is accessed in comparison with the well-known benchmark
algorithms that includes Q-Learning (QL), Least Recently Used (LRU) caching strategy (Mohamed et al.,
2018), Least Frequently Used (LFU) caching strategy (Jaleel et al., 2010), and No caching (NC) algorithm.

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

11

The QL algorithm is a classic reinforcement Learning (RL) algorithm with good learning effects, which
is appropriate for solving joint optimization problems that are modeled as MDP, such as task unloading
and resource allocation. The algorithm keep the Q-values in bi-dimensional matrix known as Q-table.
Nevertheless, the capacity of Q-table is limited in terms of storage which emanates Q-table explosion
challenge that cause QL algorithm to be inappropriate for large population size. Therefore, this algorithm
competes with the proposed algorithm that leverages the advanced capacity of neural networks to improve
storage capacity. The LRU strategy keeps track of the most up-to-date requests for each content in the
cache server and evict the least-recently accessed content when the cache is running out of space to free
space for storage of the new content. The LFU strategy focuses on the frequency of requests for each
cached content and evict the least-frequently accessed content when the cache is running out of space to
accommodate the new incoming content. The NC strategy serves users’ requests independent of caching
policy. There is no any content cached at the local server, therefore, each users’ request is served only by
the original server. The algorithms are implemented in edgeCloudSim 4.0 simulation environment built
on computer with INTEL core i5-7200U @3.10GHz CPU, 4.00GB-RAM, 1TB hard disk, x64 Ubuntu
16.04 LTS. The following sections present the performance metrics and discussion of simulation results.

Experimental Results and Comparative Analysis
Figure 2 illustrates the impacts of the learning-rate on the convergence performance of the proposed
strategy in terms of average rewards when the number of episodes varies. As shown in the figure,
the average rewards per episode is very low when the number of episode is low. However, for all
learning-rates 1.0e-3, 1.0e-4, and 1.0e-5, the proposed scheme exhibits increasing trend of average
rewards with increase in the number of episode until it attains a reasonably stable value. In all cases,

Table 1. Edge devices parameter setting

Parameter Values

Processing rate 10256 MIPS

RAM 4096 MB

Storage 350000 MB

Unit cost of storage 0.15

Unit cost of bandwidth 0.1

Bandwidth 20 MHz

Figure 2. The impacts of the learning-rate on convergence performance of the proposed strategy in terms of average rewards
when the number of episodes varies

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

12

the proposed strategy converges quicker and achieves higher rewards when the learning-rate is large
(1.0e-3) than when the learning-rate is small (1.0e-4 and 1.0e-5). Conversely, the larger learning-
rate is suitable for local optimization problems while the smaller learning-rate is suitable for global
optimization problems [157]. Consequently, the choice of the learning rate depends on the nature of
the problem. Therefore, throughout the simulation experiments, the learning-rate used is 1.0e-3.

Figure 3 demonstrates the impacts of the size of the min-batch for individual gradient-update
in DRL method on average rewards achieved by an agent. The min-batch size parameter defines
the number of samples considered in every training phase. The analysis of simulation results show
that, the agent achieves higher average rewards when the size of min-batch sample is small (32) than
when is 64 and 128. Therefore, the selection of this parameter can vary depending on the problem.
Throughout the simulation experiments for this study, the size of the min-batch is set as 32.

Figure 4 portrays the impact of Zipf-distribution skewness parameter on the performance of the
caching schemes in terms of cache-miss rate when the caching capacity is fixed. It is evident that the
cache-miss rate of the proposed strategy, QL, LFU and LRU decreases when the Zipf-distribution
skewness parameter increases from 0.4 to 1.4. This is because as skewness parameter become large, it
intensify the content-popularity that improves caching strategy. Consequently, the probability of cache-
miss become low. However, the performance of no caching scheme is constant which implies that Zipf-
skewness distribution parameter has no impact on non-caching scheme. Moreover, at first the proposed

Figure 3. The impacts of the size of the min-batch for individual gradient-update in DRL-method on average rewards achieved by an agent

Figure 4. The impacts of Zipf-distribution skewness parameter on cache-miss rate

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

13

strategy exhibit no benefits over other schemes, then it outperforms QL, LFU, LRU and no caching
schemes with smaller performance gap compared to QL. This is because the proposed scheme begins
to learn the popularity of contents, update the neural-network, and adapt to the caching environment.

Figure 5 portrays the impact of Zipf-distribution skewness parameter on the performance of the
caching schemes in terms of cache-hit rate when the caching capacity is fixed at 200GB.

It is evident that the performance of the proposed strategy, QL, LFU and LRU increases when
the Zipf-distribution skewness parameter increases from 0.4 to 1.4.

This is because as skewness parameter become large, imply that the content is more popular, and
consequently the probability of caching such content to the local cache is high. Moreover, the proposed strategy
performs better than other schemes. Therefore, the analysis of results provide evidence that the proposed
strategy can efficiently learn the popularity of contents from user’s requests and make optimal caching decision
that addresses long-term cache-miss challenge and improves cache-hit in caching environment.

Figure 6 portrays the impact of cache capacity on the performance of the caching schemes in terms
of gain in service cost. As shown in Figure 6, the proposed strategy, QL, LFU and LRU exhibit increasing
trend in terms of gain in service cost when the cache capacity increases from 50GB to 500GB. In all
cases the proposed strategy achieves better results compared to other strategies saving cost up to 68.5%
when the cache capacity is large (500GB). It is obvious that large caching capacity provide high chance
to cache more popular content which minimizes the transmission cost to the remote servers.

Figure 5. The impacts of Zipf-distribution skewness parameter on cache-hit rate

Figure 6. The impacts of cache capacity on the performance of the caching schemes in terms of gain in service cost

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

14

CONCLUSION

This paper essentially investigates the cache server selection and resource allocation problem in
MEC-supported environment. An adaptive strategy that take into account transmission cost and
caching cost while fulfilling capacity and delay constraints is proposed. Initially, the cache server and
resource allocation in MEC-assisted system is formulated as a weighted cost model to balance the
transmission cost and caching resource renting cost. Then, a novel adaptive caching decision scheme
that leverages the advanced capability of DRL is proposed to guarantee optimal service delivery cost
while meeting latency and caching capacity constraints for content delivery in MEC environment.
Experimental results show that the average rewards increases when the number of episode increases
until it attains a reasonably stable value. Also, it is observed that, the agent achieves higher average
rewards when the size of min-batch sample for individual gradient-update is small. Moreover, the
proposed strategy attains an improved performance and outperforms other baseline approaches in
terms of cache-hit rate, cache-miss rate, and savings in service costs. In the future, researchers will
largely focus on extensive assessment of the proposed scheme to evaluate its effectiveness in real-
working mobile edge caching systems.

ACKNOWLEDGMENT

The authors would like to thank Wuhan university of Technology (WHUT), and Sokoine university
of Agriculture for creating supporting environments for the study.

FUNDING AGENCY

The publisher has waived the Open Access Processing fee for this article.

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

15

REFERENCES

Bastug, E., Bennis, M., & Debbah, M. (2015). A transfer learning approach for cache-enabled wireless networks
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks. Proceeding of 13th IEEE International
Symposium, 161-166.

Bharath, B. N., Nagananda, K. G., & Poor, H. V. (2016). A learning-based approach to caching in
heterogeneous small cell networks. IEEE Transactions on Communications, 64(4), 1674–1686. doi:10.1109/
TCOMM.2016.2536728

Cisco. (n.d.). Cisco visual networking index: Global mobile data traffic forecast update, 2016-2021. https://
www.cisco.com/c/en/us/solutions/ collateral/service-provider/visual-networking-index-vni/mobile-white-
paper-c11-520862.html

Delgado, A., & Romero, I. (2016). Environmental conflict analysis using an integrated grey clustering and
entropy-weight method: A case study of a mining project in Peru. Environmental Modelling & Software, 77(1),
108–121. doi:10.1016/j.envsoft.2015.12.011

He, X., Wang, K., & Xu, W. (2019). QoE-Driven Content-Centric Caching With Deep Reinforcement Learning
in Edge-Enabled IoT. IEEE Computational Intelligence Magazine, 14(4), 12–20. doi:10.1109/MCI.2019.2937608

Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., & Young, V. (2015). Mobile Edge Computing: A key technology
towards 5G. ETSI White Paper No. 11. http://www.etsi.org/images /files/ETSI White papers/etsi wp11 mec a
key technology towards 5g.pdf

Jaleel, A., Theobald, K. B., Steely, S. C., & Emer, J. (2010). High performance cache replacement using
re-reference interval prediction (RRIP). Proceeding of 37th Annual international symposium on computing
architecture, 60–71. doi:10.1145/1815961.1815971

Kan, N., Zou, J., Tang, K., Li, C., Liu, N., & Xiong, H. (2019). Deep reinforcement learning-based rate adaptation
for adaptive 360-degree video streaming. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 4030–4034. doi:10.1109/ICASSP.2019.8683779

Mahenge, M. P. J., Li, C., & Sanga, C. A. (2019). Mobile Edge Computing: Cost-Efficient Content Delivery
in Resource-Constrained Mobile Computing Environment. International Journal of Mobile Computing and
Multimedia Communications, 10(3), 23–46. doi:10.4018/IJMCMC.2019070102

Mohamed, A., Traverso, S., Giaccone, P., Leonardi, E., & Niccolini, S. (2020). Analyzing the performance of
LRU caches under non-stationary traffic patterns. https://arxiv.org/abs/1301.4909

Nguyen, T., & Vojnovic, M. (2011). Weighted proportional allocation. Proceeding of the ACM
SIGMETRICS joint international conference on Measurement and modeling of computer systems, 173-184.
doi:10.1145/1993744.1993760

Pantisano, F., Bennis, M., Saad, W., & Debbah, M. (2014). In-network caching and content placement in
cooperative small cell networks. Proceeding of international conference on 5G for Ubiquitous Connectivity
(5GU), 128–133. doi:10.4108/icst.5gu.2014.258230

Pompili, D., Hajisami, A., & Tran, T. X. (2016). Elastic resource utilization framework for high capacity and energy
efficiency in Cloud RAN. IEEE Communications Magazine, 54(1), 26–32. doi:10.1109/MCOM.2016.7378422

Skourletopoulos, G., Mavromoustakis, C. X., & Mastorakis, G. (2017). Big Data and Cloud Computing: A
Survey of the State-of-the-Art and Research Challenges. In C. X. Mavromoustakis (Ed.), Advances in Mobile
Cloud Computing and Big Data in the 5G Era (pp. 23–41). Springer. doi:10.1007/978-3-319-45145-9_2

Tran, T. X., Hajisami, A., Pandey, P., & Pompili, D. (2017). Collaborative Mobile Edge Computing in 5G
Networks: New Paradigms, Scenarios, and Challenges. IEEE Communications Magazine, 55(4), 54–61.
doi:10.1109/MCOM.2017.1600863

Tran, T. X., Hajisami, A., & Pompili, D. (2017). A Cooperative Hierarchical Caching Strategy for Cloud Radio
Access Networks. IEEE Network, 31(4), 35–41. doi:10.1109/MNET.2017.1600307

http://dx.doi.org/10.1109/TCOMM.2016.2536728
http://dx.doi.org/10.1109/TCOMM.2016.2536728
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://dx.doi.org/10.1016/j.envsoft.2015.12.011
http://dx.doi.org/10.1109/MCI.2019.2937608
http://www.etsi.org/images/files/ETSIWhitepapers/etsiwp11mecakeytechnologytowards5g.pdf
http://www.etsi.org/images/files/ETSIWhitepapers/etsiwp11mecakeytechnologytowards5g.pdf
http://dx.doi.org/10.1145/1815961.1815971
http://dx.doi.org/10.1109/ICASSP.2019.8683779
http://dx.doi.org/10.4018/IJMCMC.2019070102
https://arxiv.org/abs/1301.4909
http://dx.doi.org/10.1145/1993744.1993760
http://dx.doi.org/10.4108/icst.5gu.2014.258230
http://dx.doi.org/10.1109/MCOM.2016.7378422
http://dx.doi.org/10.1007/978-3-319-45145-9_2
http://dx.doi.org/10.1109/MCOM.2017.1600863
http://dx.doi.org/10.1109/MNET.2017.1600307

International Journal of Information Communication Technologies and Human Development
Volume 14 • Issue 1

16

Wang, X., Chen, M., Taleb, T., Ksentini, A., & Leung, V. (2014). Cache in the air: Exploiting content caching
and delivery techniques for 5G systems. IEEE Communications Magazine, 52(2), 131–139. doi:10.1109/
MCOM.2014.6736753

Zhao, N., Liu, X., Yu, F. R., Li, M., & Leung, V. C. (2016). Communications, caching, and computing oriented
small cell networks with interference alignment. IEEE Communications Magazine, 54(9), 29–35. doi:10.1109/
MCOM.2016.7565184

Michael Pendo John Mahenge is a Tanzanian and Lecturer at the Department of Informatics and Information
Technology (DIIT), College of Natural and Applied Sciences (CoNAS), Sokoine University of Agriculture, Tanzania.
He was awarded a PhD in computer Science and Technology from Wuhan University of Technology, China in May,
2021, Master’s degree in Information and Communication Science and Engineering from Nelson Mandela African
Institution of Science and Technology (NM-AIST), Tanzania in 2014 and Bachelors’ degree (BSc. informatics) from
Sokoine University of Agriculture (SUA), Tanzania in 2011. He has co-authored a number of papers, conference
proceedings and book chapters in the field of Mobile Computing, E-learning, M-learning and ICT4D published in
peer reviewed journals and conference proceeding. His research interest is in Mobile Edge Computing (network
resource optimization, offloading, resource scheduling and allocation, and content caching), application of artificial
intelligence in plant disease identification and prediction, Mobile Cloud Computing applications particularly
E-Learning, M-Learning, Healthcare and ICT4D. He has excellent interpersonal skills.

Edvin J. Kitindi received the B.Sc. degree in ICT management from Mzumbe University Morogoro Tanzania,
in 2008. Then M.Eng. degree in electronics and communication engineering and Ph.D. in Communication and
Information Systems from Chongqing University, Chongqing, China, in 2012 and 2018, respectively. He has been
with the Sokoine University of Agriculture, Tanzania, as an Academic Staff of informatics, since 2008. His current
research interests include wireless network virtualization, mobile networks’ resources management, and ICT4D.

http://dx.doi.org/10.1109/MCOM.2014.6736753
http://dx.doi.org/10.1109/MCOM.2014.6736753
http://dx.doi.org/10.1109/MCOM.2016.7565184
http://dx.doi.org/10.1109/MCOM.2016.7565184

