
DOI: 10.4018/IJSVST.324063

International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

An Agile Approach for Lifecycle 
Integration in Personal Rapid 
Transit Systems Engineering
Nicholas Davenport, Deloitte, UK

Theo Tryfonas, University of Bristol, UK*

 https://orcid.org/0000-0003-4024-8003

Alan Peters, Connected Places Catapult, UK

Stylianos Karatzas, University of Cambridge, UK

Anastasios Ioannis Karameros, University of Patras, Greece

ABSTRACT

Dependable systems pose particular challenges to system developers who try to implement agile 
approaches to tackle the problem of requirements scope creep. However, legislation compliance, safety 
case development, and other strong contextual influences may be seen to inhibit the implementation 
of any approaches other than the traditional linear life cycles, even though agility may be able to 
improve the development process in parts. This article discusses key success factors when integrating 
agile with structured systems development life cycle approaches. The authors adopt an empirical 
approach and analyse a historical case study of a personal rapid transit (PRT) system, reflecting on 
key factors and relating those to the relevant literature. Based on these experiences, a model for the 
integration of agile with structured systems lifecycle models in dependable systems is developed. This 
model addresses the challenge of integrating multiple lifecycles of potentially conflicting objectives 
within a single programme.

Keywords
agility, lifecycle integration, personal rapid transit, systems engineering

INTRODUCTION

Agile software development methodologies have become prevalent in IT companies seeking to develop 
software in high-risk, fast-changing commercial environments (West & Grant, 2010). These methods 
help manage risk, uncertainty, and unforeseen change via early and frequent releases of working 
software, collaborative development in small teams, customer involvement, and adaptive processes. 

https://orcid.org/0000-0003-4024-8003


International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

2

Agile is an incremental and iterative software development approach. In Agile methodologies planning 
is done at the initial stage; however, throughout the project, changes are accepted along with constant 
feedback provided by users for the improvement of the project (Kumar, 2019; Cockburn, 2001, 
2008; Highsmith, 2002; Boehm, 2002; Boehm & Turner 2003a, 2003b; Schwaber, 2004; Augustine, 
2005). This process is a significant departure from conventional, plan-driven methods that attempt 
to foresee change through rigorous up-front requirements gathering, analysis, and design. However, 
in many cases, there is a need to balance Agile methods with plan-driven methods to provide both 
high flexibility and high assurance (Boehm, 2002). Increasing attention has been given to the use 
of Agile methods for developing systems comprising software and hardware (Turner, 2007; Smith, 
2007, 2009; Rothman, 2007; Hugos, 2009). Projects with high levels of uncertainty and high rates 
of unforeseen change are likely to benefit from iterative design, frequent integration, and active 
involvement of stakeholders to establish, prioritize, and verify requirements as they become better 
understood. However, plan-driven methods are widely regarded as essential for systems that need 
up-front architecture to support hardware integration and early safety assurance. Novel system 
development projects are likely to benefit from combined elements of both plan-driven and Agile 
methods in achieving high flexibility and high assurance. Recent literature reports on projects in which 
Agile methods have been applied even in projects where the traditional plan-driven approach used 
to be mainstream (e.g., regulated and safety-critical environments) because they offer more efficient 
and flexible ways to produce software (Mansoor et al., 2019; Van Waardenburg & Van Vliet, 2013; 
Górski & Łukasiewicz, 2013; Jonsson et al., 2012; Mostashari et al., 2012). Baskeville et al. (2011) 
have shown that companies can successfully combine Agile and plan-driven approaches to achieve 
the benefits of each method.

This paper examines the feasibility of multiple life cycle approaches integration under a single 
program. Based on the experience of application of Agile methods used to enhance the development 
and delivery of a major U.K. airport’s personal rapid transit (PRT) system, this work contributes 
new ideas on how agility may benefit new system development projects, in cases where compliance 
and certification requirements (e.g., safety cases) dictate the use of structured systems development 
approaches for certain subsystems. In this paper we synthesize state-of-the-art literature to suggest 
how Agile principles and practices can be used to provide a degree of agility in new hardware/
software development projects. We also describe our research approach and present a case study on 
the delivery of the world’s first commercial PRT system at a major U.K. airport. We conclude the 
paper with a discussion and our final conclusions.

BACKGROUND AND EXISTING WORK

Agile Versus Structured Systems Development
There is ample discussion in the literature of systems engineering (SE) on the question of how 
structured approaches compare against Agile methods. Boehm (2002) distinguished between Agile 
and plan-driven methods for software development projects and also suggested how a degree of 
agility can be brought to plan-driven methods. This research extended this thinking to broader 
systems development methods that integrate both hardware and software. “Plan-driven methods” 
refer to traditional systems engineering and project management practices and are considered as 
the conventional way to develop large complex systems. Plan-driven methods adhere to specific, 
predefined processes in moving the system through a series of planned development phases (system 
development life cycle). Broadly, these processes focus on establishing requirements, establishing 
an architecture, decomposing the system into logical subsystems, designing the subsystems, building 
the subsystems, testing the subsystems, integrating the subsystems, and testing the system; that is, 
the V model.



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

3

There is a concern for completeness of documentation at every step of the way to provide 
thorough verification of the system, traceability between requirements and design specifications, 
and verification of the processes themselves for quality assurance purposes. The intended outcome 
is a fully operational capability matched to the needs of clients, end users, and stakeholders (Stevens, 
1998). The original tendency was to view the system development cycle as a waterfall from concept 
through to the end product (Schlager, 1956; Hall, 1962; Goode, 1957). However, incremental and 
iterative processes have been used for several decades in software engineering (Larman & Basili, 
2003). In the mid-1980s incremental and iterative processes were adopted to deal with the increasing 
participation of software in system developments, but still with strong documentation and traceability 
mandates across all development activities (Boehm et al., 2010; Boehm & Łukasiewicz, 2013).

In contrast, Agile methods are more lightweight processes that employ short iterative cycles; 
actively involve users/customers to establish, prioritize, and verify requirements; and rely on tacit 
knowledge within a team as opposed to documentation (Ramesh et al., 2010; Boehm & Turner, 
2003a, 2003b). They employ iterative and incremental development in which planning is on the 
next iteration/increment only, and each iteration/increment is planned according to the needs of the 
customer or end-user representative. Agile methods exploit several properties of software in allowing 
continuous integration and test-driven development. Software can be cost-effectively redesigned and 
refactored to accommodate changing requirements. Agile methods employ Lean principles, such as 
minimizing waste, doing what is sufficient, and delaying decisions to the last feasible moment. Teams 
are self-organizing and development practices are emergent. Processes, principles, and work structures 
are recognized during the project, rather than being predetermined, and systems are developed in 
an incremental (small software releases, with rapid cycles), cooperative (customer and developers 
working constantly together with close communication), straightforward (the method itself is easy 
to learn and to modify, well documented), and adaptive (able to make last moment changes) way 
(Abrahamsson et al., 2017).

The need for a balance between Agile and plan-driven methods in organizations and individual 
projects is well understood in the software domain (Boehm, 2002; Vinekar, 2006) because companies 
need to create value quickly as well as provide high assurance of their product. Boehm (2002) suggested 
that projects can be positioned on a continuum from purely Agile to purely plan-driven, indicating 
their reliance on plans, and offers a risk-based strategy for deciding the level of planning required. 
Karlström (2006) considered the need for embedding Agile methods in conventional stage-gate project 
management models. Assuming that a project is either traditional or Agile, Vinekar suggested that 
two distinct, separate cultures must be maintained if an organization is to successfully undertake both 
types of projects in parallel (Vinekar, 2006). Nerur (2005) suggested that Agile methods are attractive 
for highly innovative projects in which the customer places high value in the outcome; however, this 
researcher suggested that organizations should be circumspect in integrating Agile methodologies 
with existing plan-driven cultures. Examples of where one approach has necessarily been replaced 
by the other can be identified, such as in the development of Boeing Commercial Airplanes’ wiring 
system design software tool (Bedoll, 2003). Turner (2007) argued that although it is obvious that 
there are large differences between the largely plan-driven Capability Maturity Model Integrated 
(CMMI) and Agile methods, both approaches have much in common. He believes that neither way 
is the “right” way to develop software, but that there are phases in a project where one of the two is 
better suited. Turner (2007) also suggested that one should combine the different fragments of the 
methods into a new hybrid method.

Smith (2007) advocated the use of Agile principles in the development of non-software systems, 
showing how many of the characteristics of software that Agile methods exploit can apply equally to 
systems that also contain hardware. Smith emphasized the importance of modular system architectures 
and the benefits of software-intensive design in creating flexibility and thus managing risk and 
uncertainty. He discussed experimentation and set-based design, along with the Lean concept of 
delaying decisions to the “last responsible moment.” Jorgensen’s Project Analyzer (Smith, 2007) 



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

4

showed how different aspects of a project lend themselves to particular development approaches, 
suggesting the simultaneous pursuit of Agile and plan-driven methods. This indicates the amount 
of project overhead relative to the residual effort left for actual product development, thus giving an 
insight into the “agility” of a given project. Turner (2007) recognized the potential benefits Agile 
principles can bring to systems engineering, given that systems are becoming increasingly software 
intensive. Turner suggested that iterative and flexible development, Lean concepts, continuous 
integration, and test-driven development are all possible for a system that relies predominantly on 
software. Boehm (2005) agreed that system architecture needs to start with the software architecture, 
and Turner (2007) suggested that software provides capability, enables flexibility, and represents the 
majority of the value of modern systems.

Rothman (2007) considered different project life cycle approaches for hardware/software systems 
on a continuum from “serial” to “iterative,” “incremental,” then “iterative/incremental,” or “Agile,” 
where each approach is intended to manage different levels and sources of risk with different levels 
of feedback. The first three categories are considered as plan-driven methods because, in systems 
engineering, they tend to have strong documentation and traceability mandates. However, incremental 
or iterative approaches are thought to provide a degree of “agility” over serial approaches, allowing 
requirements and system architecture to change and evolve through the use of iterations or increments. 
Rothman showed how a hardware/software project can combine these different development life 
cycles for hardware, firmware and software (Figure 1).

Life Cycle Integration Related Work
Agile practices have gained considerable popularity in industry and research communities. The latest 
State of Agile Survey 2018 (Agile State Report, 2018) revealed that the top three reasons that drive 
organizations to adopt Agile were to accelerate product delivery, to manage changing requirements, 
and to increase productivity. Examples of the emergence of Agile methods in large-scale projects 
can be found in companies such as Lockheed Martin (Boehm, 2006). Furthermore, companies have 
started to successfully combine Agile and plan-driven approaches to receive the benefits of each 
approach (Baskeville et al., 2011). Millard et al. (2014) demonstrated how the development of a large 
command-and-control (C2) system can benefit from the combination of Agile practices and plan-
driven approaches. Similarly, Hallberg et al. (2010) proposed an Agile architecture framework for 
developing C2 systems, and the use of their proposed architecture framework was examined in three 

Figure 1. A combination of life cycles in a hardware/firmware/software project
(Adapted After Rothman, 2007)



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

5

case studies based on Swedish military projects. Hallberg et al. (2010) argued for the framework’s 
appropriateness for developing C2 systems, noting that it can be extended to support the development 
of other systems.

Agile software development provides benefits, but also introduces challenges with regard to 
project risks (Ramesh et al., 2010). Baskeville et al. argued (2011) that the term Agile practices 
is vague and can be attributed to anything. Górski and Łukasiewicz (2013) focused on the risk of 
integrating Agile practices in critical software, while satisfying software assurance requirements. 
Górski and Łukasiewicz (2013) conducted a user study and found that to conform to the requirements 
of safety-critical projects, different approaches of Agile practices should be employed. Jonsson et al. 
(2012) investigated if Agile practices conform to EN 50128, a standard that regulates safety-related 
software for railway applications. They found that Agile practices can be tailored to fit in this regulated 
development environment, offering, for instance, more efficient development, but can also cause 
conflicts with this standard.

Fontana et al. (2014) attempted to define and explore the maturity of software development 
in teams comprising Agile practitioners, by conducting a user study and statistical analysis. They 
found that maturity in Agile software development should be people centered (i.e., based on Agile 
practices such as flexibility and agility), rather than prescriptive processes. Boehm (2013) discussed 
how recent trends (such as big data and cloud computing) influence the integration of systems and 
software engineering processes. Machine learning approaches can affect the software life cycles with 
the ability to integrate early models and simulation results from historic or synthetic data (Kumar, 
2019). To address these challenges, Boehm proposed an incremental commitment spiral model process 
framework and a set of process strategies.

RESEARCH APPROACH

For this paper we used inductive case study research as a method to develop theory (as per Marshall, 
1999) by examining the extent to which Agile methods and principles can be integrated with structured 
systems development and how. We used previous experiences of the project, together with the Agile 
concepts developed from the literature, as a basis for inquiry into the development processes before, 
during, and after our involvement. This involvement includes in summary participation in the project 
management team, developing related systems, conducting interviews with relevant stakeholders 
during and after the development period, and reviewing transcripts and deliverables. One of us had 
direct involvement with the management and delivery of the project, another had academic oversight 
of their output, and two others contributed to the retrospective analysis of the material and the 
development of the theoretical framework.

Data collection for this case study was based on one-to-one semistructured interviews, focus 
groups and informal discussions with company personnel, project meeting minutes, and documentation 
reviews. Much of this data was compiled into a reflective diary, which later formed the basis for 
analysis techniques, including basic coding, analytic induction, critical incident analysis, and narrative 
analysis. These techniques were used to identify similarities to the Agile project management and 
Agile software development literature, which in turn led to further inquiry and assimilation of data. 
As such, our results cannot be considered generalizable without taking into consideration our specific 
assumptions because they depend on features of the PRT project and the company that implemented 
it. However, we believe that our experience in delivering the PRT project can help other new systems 
developers who use Agile principles and practices, especially where convention dictates an entirely 
plan-driven approach.

We developed the case study after the primary contributor’s involvement to the project. It focused 
on the same events, from a developer and even an executive viewpoint, helping to corroborate findings 
from each research method and contrast between developer culture and management culture. Through 
the course of reflection and analysis of the evidence as discussed above (basic coding, analytic 



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

6

induction etc.), we looked at decisions and events primarily from a management viewpoint and did 
not fully consider many aspects of development (it was not intended to do so). Emergent requirements 
and tasks may well have been by-products of a development process not yet acknowledged by the 
management team. Further literature was then found addressing the need for Agile methods and 
principles and their application to conventional SE practice. We used these concepts to identify 
mechanisms behind the successes and difficulties seen during the period of involvement and to 
suggest changes to the management approach, such as the introduction of Agile project metrics. In 
particular, our work in managing early integration and test of new communications equipment and 
the development of operator interfaces was deemed to have played a crucial part in the success of 
the overall program.

CASE STUDY: AN AIRPORT PRT PROJECT

Project Overview
This case study examines how a degree of agility was achieved during the implementation of a PRT 
system at the business car park of a major U.K. airport, complementary to the need for plan-driven 
approaches to support hardware and safety-critical aspects. We used Boehm’s project characteristics 
(Boehm, 2003) in the following sections to point out how a degree of agility was achieved in terms 
of application, management, technical, and organizational attributes. We examined characteristics 
originally set forth by Boehm and Turner (2003a) to point out how a degree of “agility” can be brought 
to new systems development projects, suggesting how the use of Agile methods, or techniques from 
Agile methods, could exploit properties of software-intensive systems. These comparators were 
used in this case study to support these ideas with evidence (see Table 1). These attributes include 
the following:

•	 Application characteristics, including primary project goals, criticality, project size, and 
application environment

•	 Management characteristics, including customer relations, and planning and control
•	 Technical characteristics, including approaches to requirements definition, development and test
•	 Organizational characteristics, including customer characteristics, developer characteristics, 

and organizational culture (Note that the original model’s “personnel characteristics” have been 
broadened to include team working and process.)

The airport PRT system is a relatively isolated system that interacts primarily with humans 
and simple external information systems. The developers did not have major external interfaces to 
worry about other than the passenger interfaces and an operator human-machine interface (HMI). It 
is expected that future generations of PRT systems will integrate with other transport equipment and 
more sophisticated information systems, promoting the need for more rigorous up-front planning 
and control of external interfaces. In terms of systems involved, the PRT project can be thought of 
as consisting of the following elements:

•	 Contracted civil works, including guideway construction, and station and operation and 
maintenance (O&M) facility construction

•	 PRT system equipment and systems, including PRT vehicles, control and communications systems 
(including track-side equipment/systems), station and berth equipment and systems, and O&M 
facility equipment and systems

Most contractor civil works were completed before the installation of PRT equipment and systems. 
However, PRT equipment and systems began development well before the design and construction 



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

7

phase, with parallel development and testing undertaken at a separate test facility in another city. The 
primary focus of this case study is on the final development and testing of PRT systems once the 
PRT equipment had been installed in the target environment. The basic architecture of this system 
is shown in Figure 2. The system essentially consists of automated guided vehicles managed via 
software-based real-time control systems, including vehicle-based guidance-navigation-and-control 
systems, central control, station control and berth control (berth doors, vehicle sensors, destination 
panel, vehicle charger, etc.). The central control system manages routing and scheduling of vehicles, 
empty vehicle management, fault detection and response, and display of system information to the 
operators in the control room. The central control system communicates with station controllers over 
a wired network, and both central and station controllers communicate with vehicles via a wireless 
communication system. Both the central control and station control systems run on customized PCs. 
Berth controllers manage berth door controllers, vehicle presence sensors, vehicle chargers, and the 
passenger destination selection panels. These run on single board computers and are developed in 
Microsoft’s .NET environment. Ethernet connections between station and berth controllers allow these 
applications to be built and tested over the network from a single location (i.e., the control room).

Vehicle control functions are managed by two hardware controllers. Vehicle guidance-navigation-
and-control, health-use-and-monitoring, and other peripheral controls are developed in the MathWorks 
dSPACE development environment and implemented on a MicroAutoBox (MABx) rapid prototyping 
platform. Traction drive, motor brake control, and safety interlock functionality are implemented in 
Vehicle Control Language on an industrial motor control unit. Safety-critical functions, including 
automatic vehicle protection (AVP) and vehicle door control functions, are replicated on each hardware 
controller for dual redundancy. The AVP system is a fixed-block signaling system that ensures safe 
vehicle separation (it is similar to that used on railways and uses inductive coupling between sensors 
on the guideway and in vehicles). The central control system server runs AVP monitoring software 
to continually monitor the health of AVP sensors and critical functionality. The majority of system 
functionality is achieved with embedded system application software.

Control system applications comprise approximately 300 KSLOC (thousand lines of code). Project 
complexity has been viewed relative to other typical software projects in Figure 3. Technical complexity 
is regarded as high, given that control systems are custom built, unprecedented, embedded, real time, 
distributed, and fault tolerant. However, external interfaces are limited to four HMIs (for passengers, 
operators, and technicians), and the system does not interface with other systems in its operating 
environment (this is likely to change if the system is extended to other areas in the airport campus).

Management complexity is regarded as above average. There were on average 25 personnel in 
the engineering organization, five of which were software engineers. Project duration is high, with 
the system not yet in commercial operation. However, the number of stakeholders was limited to a 
single client (the client airport) and the safety verification team, reducing complexity in this respect. 
The client assigned a design-build-operate-maintain (DBOM) contract to the PRT system developer 
for the scheme at the beginning of the project. The subsequent program was conceived as a series of 
phases: development, demonstration, construction, installation, commissioning, confidence trials, 
initial operations, and then full operations. The PRT developer commenced further design and 
development to meet the expanded requirements of the full production system. Changes were also 
made at a remote test facility to allow testing to be more representative of the airport application. 
The idea was to develop much of the system’s core capability at the test facility before moving to 
the target environment.

High-level planning, including user requirements definition, success criteria, and assurance 
processes, were necessarily plan driven. There was a clear and definite understanding of the customer’s 
transit capability needs, which could not perceivably be met with a partially complete system, and 
a rigorous assurance process required comprehensive documentation to demonstrate adherence to 
process standards. Rigorous up-front planning was necessary for contract pricing and agreeing on 
payments contingent on successful completion of development milestones. Thus, in the beginning 



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

8

system-level development was necessarily plan driven. Detailed plans were drawn up, identifying all 
major tasks, durations and work products, and these details became part of the contractual agreement 
between the airport and the developer who were required to issue management plans, including those 
relating to requirements management, configuration management, test management, information 
management, and system assurance. User requirements and success criteria set out functional 
requirements (e.g., vehicle interior, passenger interface), performance requirements (e.g., capacity, 
response time, availability), safety feature verification, regulation and standards compliance, and key 
system demonstration requirements. These requirements and success criteria evolved over time as both 
organizations’ understanding of the system matured. In general, Agile methods cannot be used where 
there is a need for a large portion of system capability up front (Boehm, 2003). However, the use of 
early software versions that were loaded onto the vehicles and control systems, as well as the use of 
pure-simulation and hardware-in-the-loop (HIL) environments, enabled developers to demonstrate 
reduced system capability from an early stage of the project.

Plans and specifications were necessary for supporting an early safety case, integrating off-the-
shelf components, and coordinating contractors and suppliers. Project planning was conducted centrally 
through one-to-one interaction between a dedicated planner and each person in the development 
team. The customer did not participate in planning or development at this level, but instead relied on 
the developer to demonstrate compliance and report progress against plan. Although system-level 

Figure 2. Airport PRT system architecture



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

9

development began with such thorough plans and specifications, the developers themselves did not 
use a lot of this information because they relied on group planning, tight collaboration, and shared 
tacit knowledge. Because of the novelty of the system, specifications were emergent and under 
continual adjustment. Most plans and specifications tended to be updated post process for assurance 
or compliance purposes. During implementation at the airport, plan-driven methods were unable 
to foresee lengthy integration processes, emergent system requirements, and emergent operational 
requirements; thus, the project suffered from schedule delays (Figure 4). Schedules were dominated 
by fault finding and fixing activities, test development activities, and supplier lead times. Emergent 
system requirements (in both hardware and software components) led to unforeseen developments, 
undermining the customer’s understanding of progress. The project suffered from the application of 
plan-driven methods because over-specification of performance requirements early on led to confusion 
and renegotiation further down the line.

In practice, development continued well into later stages of the program. After various activities 
were migrated to the target environment, numerous emerging development and test activities 
undermined the customer’s understanding of progress, even leading to growing concerns over the 
contractor’s ability to deliver. The PRT developers then shifted their management approach to a more 
Agile one, using short-term planning and frequent and early releases to demonstrate progress and build 
confidence. This approach then exploited the software-intensive nature of development, with new 
functionality incorporated primarily through iterations of application software and with integration 
difficulties resolved effectively through the use of rapid cycles of development and automated testing 
in both pure-simulation and HIL environments. Deliberate group planning sessions with end-user 
participation allowed developers to operate on the basis of shared tacit knowledge, minimizing their 
documentation overhead. Evidently, a degree of agility was achieved in a variety of management, 
technical, and organizational respects.

A Critical Reflection of Application, Management, 
Technical, and Organizational Characteristics
The core system design, including the basic concept of operations, was established early in the project. 
This step incorporated a number of key safety features, such as unidirectional, segregated guideway, 
offline stations, small vehicles, a limited maximum speed, and an independent AVP. Vehicles use 
fail-safe electromagnetic “hold-off” braking systems and interlocks to safeguard passengers in moving 
vehicles. The guideway curbs retain vehicles and minimize the angle of incidence in the event of 
a steering failure. Features such as these together provided an inherent “layer” of safety, allowing 
higher flexibility in the subsequent development approach.

Safety was a key consideration from the start of the development of the system concept. The 
PRT had no safety process standards specific to it because this was a new form of transport system. 
As a result, developers devised their own process, which emphasized the need to incorporate safety 

Figure 3. Airport PRT perceived project complexity



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

10

in every stage of the project. An independent safety body—the Safety Verification Team (SVT)—
was specified, reviewing the project with regard to safety and ensuring that this review would take 
place at well-defined milestones. This review process relied on a substantial amount of up-to-date 
and comprehensive safety documentation being made available to the SVT and client organization. 
These reviews had to be planned well in advance. The feedback from the reviews helped satisfy the 
end-client that the system was fulfilling all the aspirations and technicalities of the safety philosophy. 
Developers also specified that a safety case would be developed alongside the rest of the product. The 
main format of the safety case would remain unchanged as the project developed, but detail would 
be added as more information about the system became available.

Because the airport PRT was a novel system, no directly relevant safety statistics on which 
to base a safety assessment were available. Therefore, the developers adopted a diverse approach 
to the safety assessment that included a hazard analysis and risk assessment against risk criteria 
agreed with His Majesty’s Railway Inspectorate (HMRI); assessments against the Railway Safety 
Principles and Guidance; assessment against the US Automated People Mover (APM) Standards 
ASCE 21; and a quantified risk assessment (QRA) allowing direct comparison with the safety targets 
agreed on between developers, the airport, and the SVT. Design standards such as IEC 61508 were 
followed to ensure robust design and safe development of safety critical functions. The SVT did not 
perform safety approval or assurance on the system; rather, the relevant assurance groups within the 
client organization completed this step. The key difference is that assurance groups looked at the 
documentation and process standard compliance, whereas the safety verification process focused on 
assessing the safety of the system based on evidence. Developers were making their own case to the 
SVT and worked with the SVT to “steer” the safety verification process. This evidence-based approach 
is considered as the reason the SVT was the focus of all safety-critical developments, and why a more 
flexible development approach was allowed in many of the subsystems. Furthermore, the use of the 
IEC 61508 standard in the development of the system promoted iterative life cycle approaches to 
manage the impact of frequent and late requirements changes on the safety case.

The project began with formally defined change control processes for requirements change, 
design review, configuration control, test procedure change, reporting and sign-off. Any changes 
related to the safety critical system (i.e., the AVP), or hardware changes expected to impact the 
program or budget were managed according to these processes. However, much of the control system 

Figure 4. Shifting program completion estimates



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

11

software used informal design reviews, together with configuration management and subversion 
repository functionality within their integrated design environments (IDEs). Furthermore, many of the 
requirements for control system functionality were codified in the system’s test modules, so changes 
to requirements and test processes required minimal documentation overhead. With only one or two 
people developing each control system module, much of the software-related functionality could be 
changed quickly and with little process overhead.

The early development activities resembled the spiral and evolutionary prototyping life cycle 
models (Rothman, 2007), using risk-driven iterative prototyping and continual customer engagement 
to progressively establish requirements and objectives (Figure 5). The development of a prototype 
system at a remote test facility was used to garner an understanding of the key enabling systems, 
such as autonomous vehicle control systems and central control system functionality. Development 
to production standards involved several component and software upgrades, as well as many new 
features to enable final operations at the airport. After development activities had been migrated to 
the airport site, the remaining developments were planned by feature and in stages from interface 
testing to single-vehicle testing and then multiple-vehicle testing. Testing was also planned by feature. 
Although many of these features were preplanned, many low-risk features concerned with high-level 
control logic and HMIs were left until later in the process when their requirements would be better 
understood. Preplanned testing activities spawned new development and test activities. Incremental 
development approaches were replaced by more Agile development approaches, responding to newly 
emerging requirements, fault-fixing activities, and test development activities (Figure 5). Specifically, 
the vehicle software development life cycle used early prototyping to establish architecture and 
determine the final approach to automatic guidance, navigation and control (Figure 5). Other features, 
such as battery charge management and health, use, and monitoring (HUMS) functionality, were 
developed in iterations. Finally, Agile iterations/increments were used to fix and test features in 
response to faults emerging from system-level integration and testing activities.

The use of a more Agile planning approach assisted the incorporation of operational requirements 
late in the process. Rapid iteration cycles, group planning, and end-user participation allowed operations 
personnel to reconcile their needs with the emerging capability of the system, without the need for heavy 
documentation or process standards compliance. This approach exploited the use of graphical user 
interface (GUI) design tools. While managers focused on short-term planning as a means of adapting 
to unforeseeable change, it was also necessary to forecast and negotiate development milestones and 
generally avoid an “open-ended project.” The client’s reaction to this shift in management style confirmed 
their intentions for the project as a showcase for PRT technology around the world. The project was not 
time critical; however, it had to be shown to be under control. The managers’ objective was to ensure 
that, once in operation, the system worked as intended and gave the best level of service possible to 
end-users of the system. Schedules were expected to slip, given the amount of uncertainty and risk 
associated with the novelty of the system. Progress metrics were supplemented with quality metrics, 
such as defects versus test cases (an Agile project management metric), to give the customer an idea of 
progress in ensuring a stable, working system throughout the integration process.

As seen in Figure 5, the development of high-level control system iterations finally became more 
Agile. Software development was planned in short iterations/increments to deal with unforeseen 
debugging and testing support. New requirements emerging from operational planning, including the 
control system’s fault response and system recovery functionality, also could be easily incorporated 
into the workflow with the use of short planning cycles. These requirements emerged primarily 
through an Agile-like development process used for operator GUI software. Safety-critical systems, 
such as the AVP system, were prototyped to determine requirements and architecture up front. This 
aspect of system development was necessarily plan driven with lengthy design review processes that 
the organization wanted to avoid repeating if possible. However, final integration and testing activities 
were coordinated in a more Agile fashion, with rapid cycles of analysis, fixing, and testing activities, 
planned one iteration at a time. Automated test support was provided through AVP monitoring software.



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

12

The system architecture was designed to accommodate late decision-making, such as with the 
system’s wireless communication system. This system was designed as a number of alternative 
solutions, each providing different levels of redundancy. Design decisions could be delayed until 
sufficient research had suggested the desired level with respect to the overall reliability needs of the 
system. Through “option-based design” serious rework was avoided. The core system architecture was 
designed to complement the small size of the development team and allow for a degree of agility in 
subsystem development. The system was divided into modules, with each module owned by a single 
developer or small team. The idea was that one person would be able to understand and manage 
everything in their module. Interfaces between modules were made as simple as possible and were 
tightly controlled to allow developers to work autonomously while ensuring that core subsystems 

Figure 5. Life cycle approaches observed during the case study PRT system development



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

13

remained broadly compatible. Developers adapted their own processes in developing each subsystem 
quickly and efficiently and collaborated to ensure that interfaces remained stable. With the majority 
of developers based in different locations around the U.K., this also enabled developers to work 
remotely for relatively long periods of time. When subsystem development was slowed by efforts to 
manage system configuration for system-level integration testing, developers had to strike a balance 
between delaying system-level integration testing to allow for more efficient subsystem development 
and integrating subsystems early and often to provide continual verification of the system.

Early consideration of software in the design process allowed developers to better integrate 
commercial-off-the-shelf (COTS) technology and mitigate late-in-the-process compatibility issues. 
Software allowed developers to get around the problem of integrating COTS technology that was not 
designed specifically for use under PRT operating conditions. One such example involved the use 
of standard lead-acid batteries and battery chargers. These are conventionally used for recharging 
vehicles over a fixed amount of time, whereas PRT systems use them for fast, opportunistic charging. 
Although the supplier of charging devices could customize charger behavior to some degree, this 
approach was not sufficient for managing a battery charge in such a dynamic operating environment. 
Consequently, the majority of control was left to battery charge management algorithms in the vehicles’ 
control software. The use of COTS-based hardware and software systems allowed developers to 
streamline their workforce and concentrate on core competencies. The focus was more toward software 
development, COTS supplier management, and system integration and testing, as opposed to low-
level design, manufacture, and unit testing. This approach avoided numerous potential integration 
difficulties and lack of testing/fixing resources. The use of software-intensive COTS-based systems 
has provided a means of dealing with change with a small organization and relatively complex new 
system development.

The system’s HMI drew developers and operating personnel into a process more akin to Agile 
methods. It initially served as a testing interface that had evolved with developers’ testing needs. 
However, this was far from sufficient for the needs of operations personnel. Furthermore, the operations 
team had minimal knowledge of system capability on which to base their operating procedures, and 
thus, were unable to provide complete, clear requirements up front. Management initially assumed 
that there was sufficient basis for designing the full operations-oriented HMI in a single iteration. 
However, the managers soon recognized that an iterative and incremental development process was 
required to (1.) foster an understanding of system capability and the necessary degree of control 
required in the HMI from a developer’s point of view; (2.) provide the operator with early versions 
to understand what they needed from the interface; and (3.) allay concerns of the customer, who had 
a bad experience with past HMI developments with early working versions. A new version of the 
software was released every month. In each iteration, a full cycle of operational analysis, planning, 
development, and testing was accomplished.

The majority of high-level control system functionality was developed in a completely simulated 
or HIL environment at the test facility. The same practice was used for integrating new features and 
new vehicles in the target environment at the airport. Simulated or “virtual” subsystems were used to 
provide a virtual environment in which key subsystems could be tested (Figure 6). For example, using 
virtual station controllers and virtual vehicles provided central control with a simulated environment 
that provided repeated automated testing under all envisaged operating scenarios. Then, real station 
controllers and real vehicles were introduced one by one to allow progressive integration and testing. 
Integrating and testing of core features of the system were performed early and often to identify errors 
not only in the implementation and specifications but also with the integration, testing, and validation 
processes themselves. Developers quickly learned that the tests used to validate operational capability, 
interoperability, and interface quality would evolve as fault finding/fixing revealed new situations to 
test for new emergent behaviors and more efficient ways to test for them. Therefore, formal system 
integration testing was supplemented with exploratory testing, fault finding, and fixing. Frequent and 
early integration was key to developing systems and practices to support testing.



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

14

The use of completely simulated and HIL environments with automated testing allowed control 
system developers to integrate and test on a frequent basis, including both the software and the 
hardware. Developers added new features/fixes with frequent (daily) cycles of build and test in a 
completely simulated environment. This step provided rapid feedback to developers, helping them to 
correct faults as they arose and allowing developers to quickly reprioritize features/fixes to support 
system integration activities. Less frequent, but more stable releases were used for HIL and human-
in-the-loop development and testing on the target platform. Feedback cycles allowed test engineers to 
detect hardware-dependent faults early and subsequently re-task developers (or add to their feature/fix 
backlog). Periodic demonstration releases allowed the customer to examine progress made (Figure 7).

The customer’s understanding of the system was critical to the airport PRT project. With 
insufficient understanding of the system from an operational point of view, the customer originally 
established performance requirements that in some cases were either contradictory or not verifiable 
with an operational system. Modeling and simulation techniques were used to develop both the 
customer’s and operations team’s understanding of the system and set more relevant validation 
criteria. The customer organization was inherently plan driven; thus, the developer’s management 
had to adapt their approach to satisfy customer needs/concerns, while also managing the relatively 
turbulent development environment within. Immense frustration was found within the customer 
organization initially as development fell behind schedule, and new tasks and new tests appeared. 
These were in essence inherent properties of a novel system development for which the more R&D 
nature of the developer was suited. Developers of the core system were accustomed to an Agile 
culture in which they owned their own processes and coordinated development activities through 

Figure 6. Use of HIL environments to support continuous integration and testing



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

15

group planning with face-to-face communication. Therefore, when the management approach was 
shifted to a more Agile approach, each person was expected and trusted to do whatever work was 
necessary to the success of the system.

Most individual developers could be considered as Cockburn level 2 or Cockburn level 3 people 
(Boehm, 2003). Because of the level of expertise and experience among developers, the management 
approach was always a “light touch” with a focus on maintaining order rather than control. Managers 
focused on listening to developers so that they could provide better suggestions for improvements and 
report progress and issues more clearly to senior management/executive level. Managers entrusted 
developers with an overall directive and let the individuals prioritize tasks and manage their own 
day-to-day commitments. Developers had a variety of automotive and aerospace backgrounds. Their 
combined knowledge and experience allowed them to tailor development processes to their needs. With 
no direct PRT track record, they relied on the expertise and experience of personnel to instil trust in 
their ability to deliver. Developers operated on the basis of shared tacit knowledge Therefore, most of 
the knowledge surrounding the system and its development could not be accessed without engaging 
with all developers and working with them over a period of time. This process frustrated the customer 
to some degree, but the customer was never in any doubt regarding the developer’s technical ability.

There could be endless further reflections upon a number of factors pertaining to application, 
management, technical, and organizational characteristics. We will, however, gather everything 
discussed so far, as well as other points, in Table 1, where using Boehm and Turner’s framework 
(2003a) we make explicit the features of agility that enabled the delivery of the PRT project in a 
way that surpassed the challenges faced and how these were integrated with the original plan-based 
approach for the system.

How Agility Made a Difference
Plan-driven methods were necessary for developing safety-critical features and providing continual 
safety verification of the system. However, many aspects of the system were subject to ongoing iterative 
development with continuous integration and testing. Safety-critical aspects were bounded to make 
safety provable and uphold the system’s safety case throughout development. From the beginning 
of the project, developers recognized that this project was a novel system requiring a new safety 
regulation and engaged in discussion with the regulator for its development. They worked with an 

Figure 7. Continuous integration cycle, test release cycle, and demonstration release cycle



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

16

independent SVT to devise a safety verification method appropriate for safety assurance of the PRT 
system. Although this process relied on comprehensive documentation, it also relied on a degree of 
trust between them and the SVT that could exist only through sustained collaborative development.

The airport’s approach to engaging with developers was inherently plan driven, using contracts as 
a basis for relations. Having validated critical aspects of the system through successful demonstrations, 
the customer was confident that it was possible to foresee the remaining issues and work through them 
in advance, formalizing plans and specifications into a contractual agreement. This was necessary for 
pricing the contract, agreeing on milestones and payments in advance, and avoiding an “open-ended” 
project. In practice, plan-driven methods were undermined from continually evolving requirements, 
developments, testing, and unforeseen changes (e.g., fault fixing) surrounding the various integration 
difficulties. Therefore, a more Agile approach to managing development activities was followed—one 
that focused planning efforts on particular testing/demonstration goals in the short-term, while using 
high-level plans to forecast and agree on key project milestones. This approach allowed for a degree 
of autonomy among developers and allowed operational requirements to be incorporated late in the 
process. The documented plans and specifications were subject to continual modification to a point 
where they could not be maintained given the limited resources. Evidently, developers tended to rely 
on tacit shared knowledge more than documented knowledge.

The developer company did not have the resources to expand; thus, it needed an architecture 
that would allow a small development team to manage the entire life cycle. Therefore, the core 
system architecture was designed around the needs of a small organization, allowing individuals 
to own a subsystem and own their own processes. Developers would be given sufficient autonomy 
with minimal process or documentation mandates. Interfaces were made extremely simple and were 
tightly controlled to allow for a degree of autonomy within each area of subsystem development. The 
decision was made early to minimize the amount of data passing through control system interfaces, 
ensuring that, while a degree of autonomy was given to each module developer, modules remained 
broadly compatible. A risk-driven approach to defining requirements introduced a further degree 
of agility in the development process. Safety requirements and requirements relating to the core 
enabling systems were defined from the beginning and were subject to rigorous change control. 
But for noncritical features such as human interfaces, the pervasive use of software throughout the 
system allowed requirements to be subsequently set and evolve as developers’ understanding of the 
requirements matured.

Developers were intent on delaying formal system-level integration until as late as possible to 
avoid being slowed down by configuration management and other managerial constraints. Later 
in the project, management began to coordinate subsystem development to achieve frequent and 
early system-level integration and early system-level testing, allowing frequent demonstrations of 
reduced functionality to the customer. The ability to deliver in short iterations was well suited for the 
company’s need for a risk-driven development approach, allowing developers to quickly understand 
the best technology approach and hardware/software architecture needed to support the system’s 
envisaged life cycle.

The airport PRT project initially saw a clash between the developer’s R&D-driven culture, which 
thrived on informal and emergent working practices, and the customer’s plan-driven one, which 
depended on up-front planning and process maturity. The developer’s management adapted their 
management style to cope with the inherent working practice, while ensuring that high level plans 
were established and maintained with the customer. Specifically, managers were forced to use short 
planning cycles, or a rolling-wave planning approach, to establish and prioritize developer’s activities. 
Key integration milestones required cross-discipline, collocated teams performing fault-finding, 
and fault-fixing activities for particular features. When schedules began to slip owing to continually 
emerging development, integration, and testing activities, the focus turned to specific demonstrable 
milestones and customer participation in planning each demonstration requirement. This shift focused 
all development on demonstrable outcomes, which the customer could verify on sight/inspection. 



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

17

Table 1. Analysis of the airport PRT case study project along the plan-driven versus agile methods characteristics comparative 
framework of Boehm and Turner (2003a)

Characteristics Plan-Driven 
Method

Agile Method Situation Response Impact

Application Primary 
goals

Predictability, 
stability, high 
assurance

Rapid value; 
responding to change

Need for high 
assurance as well as a 
degree of flexibility to 
cope with unforeseen 
changes in a novel 
system development

Combination of proven 
off-the-shelf technology 
where possible, integrated 
and operated with in-house 
developed software

High assurance and 
high flexibility

Criticality Up-front 
architecture is 
necessary for 
proving safety. 
Safety assurance 
process requires 
rigorous up-front 
planning and 
adherence to 
process standards.

Safety can be 
achieved with 
refactoring to 
safety standards; 
however, safety may 
be compromised 
by subsequent 
changes. Continuous 
integration and 
“continuous 
certification” may be 
possible.

Transit system safety 
integrity needed to be 
upheld and provable 
despite design changes 
and adjustments 
occurring throughout 
system.

Architecture set early 
to support a safety case. 
Safety-critical functionality 
was bounded (i.e., the AVP 
system). Separate life cycle 
approach used for safety-
critical subsystem.

Safety was provable 
and safety-critical 
functionality was 
safeguarded from 
design changes 
elsewhere in the 
system.

Size Large teams and 
projects

Small teams and 
projects

Small team 
of engineers/
developers—10 
personnel, including 
five software 
developers

Architecture designed 
around the organization to 
allow for high autonomy 
in areas of subsystem 
development.

Minimized 
management and 
communication 
overhead, maximizing 
efficiency

Environment Required when 
there is a large 
portion of system 
capability needed 
up front.

Suited for systems 
that can provide 
business value to the 
customer in small 
increments/iterations

Full operational 
capability was not 
so important to the 
customer as early 
feature demonstration 
to manage risks and 
allay concerns.

Early demonstrations of 
reduced functionality

This approach 
was vital to early 
procurement and 
building confidence 
in the system as its 
development moved 
on-site.

Up-front 
architecture 
necessary for 
managing 
interfaces with 
external systems

Few external 
interfaces to control

The system only 
interfaces with 
operations personnel 
and passengers. 
External interfaces are 
software-based HMIs.

Interfaces could be 
designed and developed 
late on in the process, with 
no external compatibility 
issues.

High adaptability to 
changes in operational 
requirements and 
customer preferences

Need to plan 
for hardware 
manufacturer, 
civil contractors, 
off-the-shelf 
hardware 
suppliers

Short planning 
horizon used in Agile 
project management 
excludes contractors, 
manufacturers, 
suppliers.

Hardware/software 
system. Need for 
flexibility and rapid 
feedback in the 
software development 
process

Separate life cycle 
approaches for hardware 
and software

Hardware development 
risks managed 
separately from 
software development 
risks

Need to plan for 
any hardware test 
and verification 
support systems

Relies on automated 
test and verification

Proven off-the-shelf 
technology avoids 
low-level hardware 
development and 
testing. PRT is fully 
automated.

Hardware and software 
testing was achieved at a 
higher level and could be 
achieved on-site and under 
automatic control.

Rapid cycle of 
development and 
testing was achieved 
for many hardware/
software systems.

Organization 
spread across 
multiple locations

Collocated teams Individuals/small 
teams developing 
different subsystems in 
different locations

Architecture designed to 
allow a degree of autonomy 
in subsystem development; 
however, integration events 
required all developers 
working together on-site.

Cross functional, 
cross-discipline team 
working together to 
support integration, 
test, and fix activities. 
Minimizes integration 
risk.

Management Customer 
relations

Plans 
contractually 
agreed on up 
front

Iterations allow 
customers/end-users 
to actively establish 
and prioritize 
require-ments on the 
system.

Progress against plan 
suffered from emergent 
development, integra-
tion, and test support 
activities

Focus turned to specific 
demonstrable milestones 
and customer participation 
in planning each 
demonstration requirement.

Progress and issues 
better understood and 
more visible

continued on following page



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

18

Characteristics Plan-Driven 
Method

Agile Method Situation Response Impact

Management Customer 
relations

Customer/
end-user not 
involved in the 
development 
process

Relies on 
customer/end-user 
participation

Customer’s lack 
of understanding 
surrounding 
development issues

Customer representative 
brought in to help steer the 
planning process

Customer 
representative could 
understand the 
challenges in more 
detail and mediate 
between PRT 
developer and the 
customer.

Process maturity 
as a means of 
instilling trust

Experience, 
expertise, and shared 
track record as a 
means of instilling 
trust

Small start-up 
and novel system; 
therefore, little process 
maturity

Customer relied on 
experience and expertise of 
developers. PRT developers 
focused on building a track 
record with the customer.

The project became as 
much a confi-dence 
and trust-building 
exercise as it was a 
system development 
exercise.

Planning and 
control

Relies on 
documented 
plans, managed 
centrally

Relies on group 
planning and tacit 
interpersonal 
knowledge

Schedules and 
specifications required 
continual rework, 
as new activities 
continually emerged

Developers used 
documentation only where 
absolutely necessary 
to their progression. 
Management maintained 
higher-level plans.

Minimized 
documentation rework 
while maintaining 
a level of progress 
reporting

Long-term 
planning

Plan only for the 
next short iteration 
(or use rolling-wave 
planning)

Emergent 
developments, fault-
finding and fault-fixing 
activities undermine 
the schedule

Planning switched to a 
rolling-wave approach, 
with detailed planning for 
the next iteration and high-
level plans for subsequent 
iterations.

Ensures that 
development activities 
are trained on a 
particular feature or 
outcome, and that 
related integration 
issues are dealt 
with before the next 
iteration. Emergent 
developments can 
be incorporated 
into subsequent 
development 
iterations.

Progress 
measured as 
“progress against 
plan”

Progress is 
measured by how 
many requirements 
are turned into 
capability, or simply 
how satisfied the 
customer is.

Progress against plan 
was not seen to reflect 
“real progress.”

Detailed planning was 
focused on the next 
demonstration milestone, 
marking progress 
toward the original user 
requirements specification.

Successful completion 
of milestones gained 
confidence in the 
plans.

Quality is 
assured through 
adherence to 
process standards.

Quality is assured 
via a continually 
working system.

Lean documentation 
approach delayed the 
assurance process.

Focus shifted toward 
empirical reliability, proven 
through continual running 
of the system throughout 
testing and commissioning.

Continual assur-ance 
provided through 
regular demonstrations 
of a working system.

Technical Requirements Up-front 
complete, 
consistent, 
traceable 
requirements

Rapid iteration 
cycles used to 
establish and 
prioritize new 
requirements with 
the customer

High-level transit 
capability understood 
by the customer. 
System requirements 
were only understood 
on a high level at the 
outset.

Risk-driven, evolutionary 
requirements. Iterative 
prototyping used to select 
an appropriate architecture

Hardware design and 
safety architecture 
defined early. Software 
development used 
Agile approaches to 
manage late changes, 
debug, and test 
activities.

Development Up-front 
architecture 
to support the 
envisaged life 
cycle of the 
system

Simplest design 
given the current 
requirement set; 
requirements too 
unpredictable to plan 
for in the current 
design

Developers could 
foresee many late 
design decisions, 
component upgrades, 
and also aspects 
that needed to 
remain flexible (e.g., 
vehicle equipment 
configuration was 
expected to change; 
vehicle control 
software development 
was evolutionary)

Up-front architecture to 
support redesign, upgrades, 
and extension of the 
system. Option-based 
design was used to delay 
decision-making where 
possible. Architecture 
designed to allow flexible 
development at subsystem 
level through the use of 
simple subsystem interfaces 
and strict interface control.

COTS component 
upgrades supported. 
Design decisions 
feasibly delayed until 
requirements were 
better under-stood. 
Adaptive processes 
and rapid develop-
ment at subsystem 
level.

continued on following page

Table 1. Continued



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

19

This approach reduced reliance on documented plans and instead focused on demonstrations of a 
working system. Collocation, deliberate group planning, and client participation were all seen as 
characteristics of a more Agile project management process. Although this was true, managers also 
had to maintain a sense of progress with the client, focusing on high-level planning for the long term 
and using demonstrations to convey progress and instill trust.

DISCUSSION

This work presented a case in which a degree of agility was crucial to the successful development 
and delivery of an airport PRT project. Agility was needed to cope with the following challenges: 

Characteristics Plan-Driven 
Method

Agile Method Situation Response Impact

Technical Development Serial, iterative, 
and incremental 
life cycles 
well suited 
for managing 
hardware devel-
opment and 
safety-critical 
func-tionality

Agile life cycle 
approach well 
suited to noncritical 
software

Different levels of 
criticality across 
hardware and software 
components, including 
a safety-critical 
hardware/software 
system.

Separate life cycle 
approaches used for 
hardware and software 
components of each 
subsystem. A combination 
of life cycles was used 
in most instances (e.g., 
iterative, incremental, and 
then Agile).

Life cycle approach 
commensurate with 
the risks associated 
with each subsys-tem. 
Multiple life cycle 
approaches required a 
signi-ficant program 
management effort.

Architecture 
designed to 
accommodate 
possible redesign/
refit

Flexibility of 
software allows for 
unforeseen design 
changes.

Unforeseen hardware/
software integration 
issues

Software was used to 
overcome late COTS 
compatibility issues (e.g., 
vehicle battery charger).

Flexibility to support 
unforeseen hardware/
software integration 
issues

Integration 
and testing

Late-in-
the-process 
integration, or 
use of prototypes 
to rehearse the 
integration and 
testing process

Continuous 
integration and test-
driven development

Distributed 
autonomous control 
system being 
developed and 
integrated with 
control system and 
communications 
equipment

Continuous integration 
of vehicle control system 
functionality with early 
hardware prototypes. 
Continuous inte-gration of 
control system functionality 
in a completely simulated 
envi-ronment. Progressive 
integration and testing on 
target platform and in target 
environment using HIL 
simulation.

Early progress before 
target hardware was 
available and before 
target environment was 
ready. Agility in the 
software development 
process to support 
the emerging needs 
of system integration 
activities.

Organizational Customers Up-front planning 
with the customer 
allows customer 
to continue to 
operate in their 
own organization.

Dedicated, 
representative, 
committed customer 
to steer development

Customer was not 
involved in the 
development process 
and did not have 
expertise with PRT 
systems.

Customer worked to 
manage interfaces between 
relevant work groups. 
Expert consultants, 
both from the customer 
organization and external, 
were used to support 
decision-making where the 
client organization lacked 
expertise/experience.

Customer’s interests 
were fully represented 
in all management and 
technical areas.

Developers Can manage the 
organization 
around system 
architecture, 
allowing for less 
experienced/
skilled people to 
contribute

Richer mix of higher-
skilled people

PRT developer had to 
work with a minimal 
number of personnel 
throughout the project

Every developer brought 
a wide range of skill 
and experience and had 
to manage a complete 
subsystem. There was no 
room for less skilled or 
inexperienced people.

The project was at 
risk from personnel 
leaving the project, or 
underperforming.

Culture Clear policies and 
procedures that 
define people’s 
roles in the 
enterprise. 
People are 
expected to 
perform their 
roles.

Adaptive processes 
and self-organizing 
teams. 
People are expected 
and trusted to do 
whatever work is 
necessary to the 
success of the project

Emerging number 
of development and 
managerial tasks 
required personnel to 
assume several roles 
and responsibilities.

Roles were initially defined, 
with clear responsibilities. 
Subsequently, people took 
on several roles and began 
to self-organize. People 
were trusted to do what 
it takes to successfully 
complete the project.

Multitasking tended 
to disrupt the Agile 
approach because 
personnel were never 
fully committed to a 
single activity.

Table 1. Continued



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

20

(a.) emergent risks owing to the novelty of the system development; (b.) the need for rapid customer 
value, given the level of uncertainty surrounding the system’s technical and commercial feasibility; 
(c.) the small size of the organization and limited overhead to support heavily documented processes; 
and (d.) the need for quality assurance despite the lack of process maturity. We used previous 
experience, together with the Agile concepts developed from the literature, as a basis for inquiry into 
the development processes before, during, and after our involvement in the project over a period of 12 
months. This explored the need for plan-driven approaches as well as the need for a degree of agility 
in both technical and management respects, and suggested, for example, the reasons for the shift in 
management style, the need for frequent and early integration as a means of managing risk, and how 
the system was designed to promote late flexibility and Agile approaches in its core subsystems. This 
inquiry has contributed to ideas on how Agile methods may significantly enhance first-time system 
developments. Thus, a key contribution of this paper is in the understanding of the mechanisms in 
support for, and benefits of, agility in first-time systems development.

The concept of the system that was delivered emphasized software as a means of achieving 
the majority of system capability. Therefore, the system naturally facilitated a necessary degree of 
agility in the development process. The pervasive use of embedded systems in the project allowed 
software to manage everything from automatic door control to vehicle guidance and navigation to 
automatic routing, scheduling, and autonomous PRT network control. Flexibility was created in 
many of these systems with the use of standard highly programmable computing platforms such as 
the Microsoft .NET framework and the dSPACE MicroAutoBox rapid prototyping platform. The 
company minimized the need for hardware support with the use of proven off-the-shelf technologies 
where possible and by reducing mechanical complexity with the use of rubber-tired vehicles running 
on simple open guideways (Figure 8). These properties together allowed for early and rapid iterations 
of a prototype system, with system capability delivered primarily through iterations of application 
software development.

Another key aspect of the developed system is that its operational capability can be evolved 
through software developments made during commercial operation. Initially, the system could run a 

Figure 8. PRT Podcar on guideway system
(Original photo courtesy of D. Rhodes, 2009)



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

21

simple service with a limited number of vehicles (i.e., three), offering the possibility of immediate 
commercial service. Through iterations of control system software, together with improved HMIs 
and operational strategies, more and more vehicles were added until the system was capable of 
operating at full capacity. Given that the airport system was a showcase for PRT, a minimum level 
of capability was required before the system was opened for commercial operations. We believe 
that this feature will become important for PRT networks of increased size and complexity, where 
initial commercial operations can steer developments to, for example, the control systems, station 
call-forward systems, and operating procedures, all funded by operating revenue. This evolutionary 
approach remains exclusive to non-safety-critical functionality, where Agile approaches to verification 
and validation, and change control/release are acceptable. Developments could allow the system to 
learn commuter behaviors, integrate with other transport networks’ scheduling systems, integrate 
with mobile applications, switch to scheduled operations during the peaks (and demand-responsive 
operations off-peak), dynamically reroute vehicles around blocked guideway links, prioritize vehicle 
availability to particular stations depending on service-level agreements, or isolate vehicles from 
the rest of the fleet and crowded stations if they are a security threat. The ability to evolve transport 
capability in this way, with no disruption to commercial operations, distinguishes PRT from other 
transport systems.

Agile development is promoted by the studied PRT system through its use of repeatable design. 
Vehicle and station control systems, as well as berth control modules were developed as a single 
module and then installed on each respective system. Furthermore, each of these systems could be 
installed remotely over the wired network (for station and berth control) or over the wireless network 
(for vehicle control). This method allowed the development and testing of new module versions in 
real time, allowing for rapid iterations of coding and testing in the target environment. Much of the 
system’s capability could be developed and tested in pure-simulation or HIL environments, allowing 
developers to move toward continuous integration and test-driven development. A pure-simulation 
platform was used for integrating new capability in short iterations, switching between periods of 
development and stabilization, and building up an automated test suite that would subsequently be 
used for HIL testing. HIL simulation was used to provide an effective test platform on which modules 
could be independently and rigorously tested, with a mixture of simulated or real subsystems in 
the loop. Test engineers could test before vehicles or other hardware became available, integrate 
hardware progressively to reduce cycle times, and manage integration difficulties more effectively. 
Short planning cycles also allowed integration testing activities to quickly feed back into the software 
development cycle, allowing developers to quickly respond to hardware-dependent faults, new 
requirements, and test support needs. This process became especially important as migration to the 
target environment incurred new developments, most of which could be absorbed into the existing 
architecture, with some requiring a degree of refactoring. This approach also assisted the incorporation 
of operational requirements that emerged with the addition of peripherals and user interfaces. The use 
of human-in-the-loop simulation assisted the development of operator interfaces, allowing operations 
personnel to develop operational procedures and the interfaces concurrently.

Agile methods rely on maintaining a continually working version of the system and using 
demonstrations to the client to convey progress and quality. This approach relies on the client 
having sufficient understanding of the system’s capability, which in the case of some systems (e.g., 
avionics systems), would be rarely seen. More intangible systems require more formal compliance 
processes to convey progress and quality. The studied PRT system allows the level of functionality, 
performance, subsystem interoperability, and total operational capability to be easily deduced upon 
visual inspection, test participation, and user trials. This is perhaps why the project converged on 
demonstration milestones as a means of measuring progress.

Documented process plans and specifications were required to satisfy safety requirements 
and for quality assurance purposes. Safety, quality, risk, configuration, and test management plans 
were required early in the project. Safety assurance was critical to gaining regulatory approval and 



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

22

satisfying the customer’s safety requirements. However, for many of the subsystems, there was 
little overhead to support the continual adjustment and modification of documentation given the 
limited number of personnel, the number of emergent development activities, and increasing time 
pressures. Documentation tended to be updated periodically, or post-process, and was usually aimed 
specifically at assurance activities. The dependence on documentation was further reduced by the use 
of automated test environments, allowing new requirements/test cases to be maintained in executable 
form. Developers evidently focused on a continually working system as a means of assuring quality.

Although the relevance of Agile principles and practices was realized only late in the project, 
the organization had naturally converged on many of the same ideas. However, it is believed that 
making the use of Agile principles and practices explicit from the outset would improve project 
performance. The organization could have further exploited the use of automated test environments, 
driving continuous integration and test-driven development. Managers could have driven development 
by feature, allowing for more effective testing, more visible progress, and improved forecasting. An 
awareness of Agile principles could have shifted the focus of quality assurance teams, placing trust in a 
continually working system as opposed to compliance with documentation-heavy assurance processes. 
Finally, the use of Agile principles could have prompted the client to view progress in terms of their 
goals and immediate values, allowing managers to set out a more progressive, yet flexible delivery 
approach, focused on delivering value to the customer early and often.

CONCLUSION

This paper presented a case study where a degree of agility was crucial to the successful development 
and delivery of a novel safety-critical system in a regulated environment. We examined the extent to 
which Agile methods principles were used to enhance the delivery of an airport PRT project, which 
provides evidence in support of Turner’s thesis on SE projects that suffer from “schedule-busting” 
integration processes (2007). The increasing involvement of software allows for increasing agility, as 
systems become much more software intensive. The project used option-based design for a number 
of subsystems, allowing design decisions to be better informed through better research/quality of 
information. The discussed PRT project used multiple life cycle approaches for different subsystems/
modules in the way motivated by Rothman (2007), managing hardware and software development 
risks separately, with Agile software development and iterative prototyping of hardware. Early 
software releases on hardware prototypes were used to ensure that the system could be developed by 
feature as early as possible. There are strong parallels with Grenning’s approach to embedded Agile 
development (2004), where quick releases are combined with more stable releases to tackle software 
bugs and hardware compatibility issues while minimizing resources/costs. The project relied on pure-
simulation and HIL environments to allow for early release and more exhaustive testing. This technique 
is already used extensively in the automotive industry, and in addition, PRT can also benefit greatly 
from HIL simulation, allowing operators to train and realize operational requirements along the way.

Because the original contractual relationship between the PRT developer and the client suffered 
when schedules and deliverables slipped, an Agile project management approach was needed to deal 
with the various nested life cycle approaches within the development team. This ties in with Smith’s 
reflections on Boeing 777 and their use of “rolling-wave” and “loose-tight” management approaches 
(2007). The lack of success in shifting the client’s plan-driven attitude confirms Boehm’s thinking 
on the degree of trust required to facilitate more Agile project management approaches (2003). In 
terms of the conflict of Agile methods with safety requirements, the airport PRT concept has inherent 
safety built in. This has allowed for more flexibility to deal with the relatively turbulent development 
process. Safety integrity was required in much embedded software. However, a long development 
period with continual demonstrations of a working system provided the necessary confidence in some 
critical aspects, such as the vehicle guidance-navigation-and-control system.



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

23

This study has identified properties of a novel automated transit system that promote the use 
of principles and practices from Agile development and Agile project management. A degree of 
agility has been seen to occur naturally; however, explicit consideration of Agile principles from the 
outset of a project led to significant increases in project performance in terms of the level of value 
perceived by the customer. We hope that this study prompts other real-world projects where new 
systems development have benefited from the use of Agile principles and practices, especially where 
convention dictates an entirely plan-driven approach.



International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

24

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile software development methods: Review 
and analysis. arXiv:1709.08439 [cs.SE]. https://doi.org/10.48550/arXiv.1709.08439

Augustine, S., Payne, B., Sencindiver, F., & Woodcock, S. (2005). Agile project management: Steering from 
the edges. Communications of the ACM, 48(12), 85–89. doi:10.1145/1101779.1101781

Baskerville, R., Pries-Heje, J., & Madsen, S. (2011). Post-agility: What follows a decade of agility? Information 
and Software Technology, 53(5), 543–555. doi:10.1016/j.infsof.2010.10.010

Bedoll, R. (2003). A tail [sic] of two projects: How ‘Agile’ methods succeeded after ‘traditional’ methods had 
failed in a critical system-development project. In F. Maurer & D. Wells (Eds.), Extreme programming and Agile 
methods - XP/Agile universe 2003. Third XP and Second Agile Universe Conference. Springer. doi:10.1007/978-
3-540-45122-8_4

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64–69. doi:10.1109/2.976920

Boehm, B. (2005). Some future trends and implications for systems and software engineering processes. Systems 
Engineering, 9(1), 1–19. doi:10.1002/sys.20044

Boehm, B. (2006). Product and process architectures for integrating Agile and plan-driven methods [Keynote 
address]. 7th International Conference on Extreme Programming and Agile Processes in Software Engineering, 
Oulu, Finland.

Boehm, B. (2013). Skating to where the puck is going: Future systems and software engineering opportunities 
and challenges. In J. Münch & K. Schmid (Eds.), Perspectives on the future of software engineering: Essays in 
honor of Dieter Rombach (pp. 299–333). Springer. doi:10.1007/978-3-642-37395-4_19

Boehm, B., Lane, J. A., Koolmanojwong, S., & Turner, R. (2010). Architected agile solutions for software-
reliant systems. In T. Dingsøyr, T. Dybå, & N. Moe (Eds.), Agile software development (pp. 165–184). Springer., 
doi:10.1007/978-3-642-12575-1_8

Boehm, B., & Turner, R. (2003a). Balancing agility and discipline: A guide for the perplexed. Addison-Wesley 
Professional. https://www.oreilly.com/library/view/balancing-agility-and/0321186125/

Boehm, B., & Turner, R. (2003b). Using risk to balance agile and plan-driven methods. Computer, 36(6), 57–66. 
doi:10.1109/MC.2003.1204376

Boehm, B., & Turner, R. (2005). Management challenges to implementing agile processes in traditional 
development organizations. IEEE Software, 22(5), 30–39. doi:10.1109/MS.2005.129

Cockburn, A. (2001). Agile software development. Addison-Wesley Professional.

Cockburn, A. (2008). Using both incremental and iterative development. Crosstalk.

CollabNet VersionOne [Digital a.i]. (2018). 12th annual state of Agile report. Digital a.i. https://digital.ai/ https://
explore.versionone.com/state-of-agile/versionone-12th- annual-state-of-agile-report-2.

Fontana, R. M., Fontana, I. M., da Rosa Garbuio, P. A., Reinehr, S., & Malucelli, A. (2014). Processes versus 
people: How should agile software development maturity be defined? Journal of Systems and Software, 97, 
140–155. doi:10.1016/j.jss.2014.07.030

Goode, H. H., & Machol, R. E. (1957). Systems engineering: An introduction to the design of large-scale 
systems. McGraw-Hill.

Górski, J., & Łukasiewicz, K. (2013). Towards agile development of critical software. In A. Gorbenko, A. 
Romanovsky, & V. Kharchenko (Eds.), 5th International Workshop, Software Engineering for Resilient Systems, 
SERENE 2013. Lecture Notes in Computer Science, 8166, (pp. 48–55). Springer. doi:10.1007/978-3-642-40894-
6_4

Grenning, J. (2004). Progress before hardware. The Agile Times, 4(1), 74-79. https://wingman-sw.com/papers/
AgileAllianceNewsletterVol4.pdf

Hall, A. D. (1962). A methodology for systems engineering. van Nostrand.

http://dx.doi.org/10.1145/1101779.1101781
http://dx.doi.org/10.1016/j.infsof.2010.10.010
http://dx.doi.org/10.1007/978-3-540-45122-8_4
http://dx.doi.org/10.1007/978-3-540-45122-8_4
http://dx.doi.org/10.1109/2.976920
http://dx.doi.org/10.1002/sys.20044
http://dx.doi.org/10.1007/978-3-642-37395-4_19
http://dx.doi.org/10.1007/978-3-642-12575-1_8
https://www.oreilly.com/library/view/balancing-agility-and/0321186125/
http://dx.doi.org/10.1109/MC.2003.1204376
http://dx.doi.org/10.1109/MS.2005.129
https://digital.ai/https://explore.versionone.com/state-of-agile/versionone-12th-
https://digital.ai/https://explore.versionone.com/state-of-agile/versionone-12th-
http://dx.doi.org/10.1016/j.jss.2014.07.030
http://dx.doi.org/10.1007/978-3-642-40894-6_4
http://dx.doi.org/10.1007/978-3-642-40894-6_4
https://wingman-sw.com/papers/AgileAllianceNewsletterVol4.pdf
https://wingman-sw.com/papers/AgileAllianceNewsletterVol4.pdf


International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

25

Hallberg, N., Andersson, R., & Ölvander, C. (2010). Agile architecture framework for model driven development 
of C2 systems. Systems Engineering, 13(2), 175–185. doi:10.1002/sys.20141

Highsmith, J. (2002). Agile software development ecosystems. Addison-Wesley Professional.

Hugos, M. H. (2009). Business agility: Sustainable prosperity in a relentlessly competitive world. J Wiley & Sons.

Jonsson, H., Larsson, S., & Punnekkat, S. (2012). Agile practices in regulated railway software development. 
In Proceedings of 2012 IEEE 23rd International Symposium on Software Reliability Engineering Workshops 
(ISSREW), (pp. 355–360). IEEE. doi:10.1109/ISSREW.2012.80

Karlstrom, D., & Runeson, P. (2006). Integrating agile software development into stage-gate managed product 
development. Empirical Software Engineering, 11(2), 203–225. doi:10.1007/s10664-006-6402-8

Kumar, P. S. (2019). PSK method for solving mixed and type-4 intuitionistic fuzzy solid transportation problems. 
[IJORIS]. International Journal of Operations Research and Information Systems, 10(2), 20–53. doi:10.4018/
IJORIS.2019040102

Kumar, R., Maheshwary, P., & Malche, T. (2019). Inside agile family: Software development methodologies. 
International Journal on Computer Science and Engineering, 7(6), 650–660. doi:10.26438/ijcse/v7i6.650660

Larman, C., & Basili, V. R. (2003). Iterative and incremental development: A brief history. Computer, 36(6), 
47–56. doi:10.1109/MC.2003.1204375

Mansoor, M., Khan, M. W., Rizvi, S. S. H., Hashmani, M. A., & Zubair, M. (2019). Adaptation of modern 
agile practices in global software engineering. In M. Rehman, A. Amin, A. R. Gilal, & M. A. Hashmani (Eds.), 
Human factors in global software engineering (pp. 164–187). IGI Global. doi:10.4018/978-1-5225-9448-2.ch007

Marshall, V. W. (1999). Reasoning with case studies: Issues of an aging workforce. Journal of Aging Studies, 
13(4), 377–389. doi:10.1016/S0890-4065(99)00016-X

Millard, W. D., Johnson, D. M., Henderson, J. M., Lombardo, N. J., Bass, R. B., & Smith, J. E. (2014). Embedding 
agile practices within a plan‐driven hierarchical project life cycle. In Proceedings of INCOSE International 
Symposium, 745–758. Pacific Northwest National Lab. (PNNL). https://www.osti.gov/biblio/1194328

Mostashari, A., McComb, S. A., Kennedy, D. M., Cloutier, R., & Korfiatis, P. (2012). Developing a stakeholder‐
assisted agile CONOPS development process. Systems Engineering, 15(1), 1–13. doi:10.1002/sys.20190

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile methodologies. 
Communications of the ACM, 48(5), 72–78. doi:10.1145/1060710.1060712

Ramesh, B., Cao, L., & Baskerville, R. (2010). Agile requirements engineering practices and challenges: An 
empirical study. Information Systems Journal, 20(5), 449–480. doi:10.1111/j.1365-2575.2007.00259.x

Rothman, J. (2007). Manage it! Your guide to modern, pragmatic project management. Pragmatic Bookshelf.

Schlager, K. J. (1956). Systems engineering—Key to modern development. IRE Transactions on Engineering 
Management, EM-3(3), 64–66. doi:10.1109/IRET-EM.1956.5007383

Schwaber, K. (2004). Agile project management with Scrum. Microsoft Press.

Smith, P. G. (2007). Flexible product development: Building agility for changing markets. Jossey-Bass.

Smith, P. G. (2009). Flexible product development for a turbulent world—Is “Agile” NPD the answer? PDMA 
Visions Magazine, 33(2), 20–21. https://www.strategy2market.com/wp-content/uploads/2014/05/Flexible-
Product-Development-Turbulent-World.pdf

Stevens, R., Brook, P., Jackson, K., & Arnold, S. (1998). Systems engineering: Coping with complexity. Prentice 
Hall.

Turner, R. (2007). Toward agile systems engineering processes. Crosstalk, 11–15. https://citeseerx.ist.psu.edu/
document?repid=rep1&type=pdf&doi=b807d8efe4acd265187a98357b19c063b5a9ad5e

Turner, R., & Jain, A. (2002). Agile meets CMMI: Culture clash or common cause? (2002). In D. Wells & L. 
Williams (Eds.), Lecture Notes in Computer Science: Vol. 2418. Extreme programming and agile methods—XP/
Agile universe 2002 (pp. 153–165). Springer. doi:10.1007/3-540-45672-4_15

http://dx.doi.org/10.1002/sys.20141
http://dx.doi.org/10.1109/ISSREW.2012.80
http://dx.doi.org/10.1007/s10664-006-6402-8
http://dx.doi.org/10.4018/IJORIS.2019040102
http://dx.doi.org/10.4018/IJORIS.2019040102
http://dx.doi.org/10.26438/ijcse/v7i6.650660
http://dx.doi.org/10.1109/MC.2003.1204375
http://dx.doi.org/10.4018/978-1-5225-9448-2.ch007
http://dx.doi.org/10.1016/S0890-4065(99)00016-X
https://www.osti.gov/biblio/1194328
http://dx.doi.org/10.1002/sys.20190
http://dx.doi.org/10.1145/1060710.1060712
http://dx.doi.org/10.1111/j.1365-2575.2007.00259.x
http://dx.doi.org/10.1109/IRET-EM.1956.5007383
https://www.strategy2market.com/wp-content/uploads/2014/05/Flexible-Product-Development-Turbulent-World.pdf
https://www.strategy2market.com/wp-content/uploads/2014/05/Flexible-Product-Development-Turbulent-World.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b807d8efe4acd265187a98357b19c063b5a9ad5e
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b807d8efe4acd265187a98357b19c063b5a9ad5e
http://dx.doi.org/10.1007/3-540-45672-4_15


International Journal of Smart Vehicles and Smart Transportation
Volume 6 • Issue 1

26

Nicholas Davenport is a strategy and operations consultant at Deloitte, U.K. He holds an engineering doctorate 
from the University of Bristol and has long worked on infrastructure projects, including intelligent transport systems 
and autonomous vehicles.

Theo Tryfonas is a chair of infrastructure systems and urban innovation at the Department of Civil Engineering, 
University of Bristol, U.K. He is a computer scientist with expertise in urban data, the IoT, and smart cities. He is a 
chartered fellow of the BCS, The Chartered Institute for IT, and a fellow of the Royal Society for Arts, Manufactures 
and Commerce (RSA).

Alan Peters is the ecosystem director at Connected Places Catapult. He is an intelligent mobility specialist and 
holds an engineering doctorate in systems from the University of Bristol. He has extensive experience working 
with emerging technologies in mobility and infrastructure sectors.

Stylianos Karatzas has received a diploma in electrical engineering and computer technology and a master of 
engineering in automation and control systems (School of Engineering, University of Patras). He holds a master of 
sciences in operations management (University of Bath, U.K). He has received a PhD from the Civil Engineering 
Department, University of Patras, in the field of smart cities infrastructure. He has worked as operations and 
project manager in a variety of construction projects in Greece and abroad. He is currently a research fellow at the 
University of Cambridge, Engineering Department, and coordinator of a number of European research projects.

Anastasios Karameros is a graduate civil engineer from the Department of Civil Engineering, University of Patras, 
and holds a master of sciences from the same institution. He is also a PhD candidate working on energy systems 
and their nexus with mobility and the built environment. He is a senior associate at PwC Greece with responsibilities 
for EU affairs and funding.

van Waardenburg, G., & van Vliet, H. (2013). When agile meets the enterprise. Information and Software 
Technology, 55(12), 2154–2171. doi:10.1016/j.infsof.2013.07.012

Vinekar, V., Slinkman, C. W., & Nerur, S. (2006). Can agile and traditional systems development approaches 
coexist? An ambidextrous view. Information Systems Management, 23(3), 31–42. doi:10.1201/1078.1058053
0/46108.23.3.20060601/93705.4

West, D., & Grant, T. (2010). Agile development: Mainstream adoption has changed agility—Trends in real-world 
adoption of agile methods. Forrester Research. https://www.forrester.com/report/agile-development-mainstream-
adoption-has-changed-agility/RES56100

http://dx.doi.org/10.1016/j.infsof.2013.07.012
http://dx.doi.org/10.1201/1078.10580530/46108.23.3.20060601/93705.4
http://dx.doi.org/10.1201/1078.10580530/46108.23.3.20060601/93705.4
https://www.forrester.com/report/agile-development-mainstream-adoption-has-changed-agility/RES56100
https://www.forrester.com/report/agile-development-mainstream-adoption-has-changed-agility/RES56100

