
DOI: 10.4018/IJMDEM.332882

International Journal of Multimedia Data Engineering and Management
Volume 14 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Automation of Explainability 
Auditing for Image Recognition
Duleep Rathgamage Don, Kennesaw State University, USA*

Jonathan Boardman, Kennesaw State University, USA

Sudhashree Sayenju, Kennesaw State University, USA

Ramazan Aygun, Kennesaw State University, USA

 https://orcid.org/0000-0001-7244-7475

Yifan Zhang, Kennesaw State University, USA

Bill Franks, Kennesaw State University, USA

Sereres Johnston, The Travelers Companies, Inc., USA

George Lee, The Travelers Companies, Inc., USA

Dan Sullivan, The Travelers Companies, Inc., USA

Girish Modgil, The Travelers Companies, Inc., USA

ABSTRACT

XAI requires artificial intelligence systems to provide explanations for their decisions and actions 
for review. Nevertheless, for big data systems where decisions are made frequently, it is technically 
impossible to have an expert monitor every decision. To solve this problem, the authors propose 
an explainability auditing method for image recognition whether the explanations are relevant for 
the decision made by a black box model, and involve an expert as needed when explanations are 
doubtful. The explainability auditing system classifies explanations as weak or satisfactory using a 
local explainability model by analyzing the image segments that impacted the decision. This version 
of the proposed method uses LIME to generate the local explanations as superpixels. Then a bag 
of image patches is extracted from the superpixels to determine their texture and evaluate the local 
explanations. Using a rooftop image dataset, the authors show that 95.7% of the cases to be audited 
can be detected by the proposed method.
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INTRODUCTION

During the last decade, artificial intelligence has claimed many achievements matching or surpassing 
human-level performance in some application domains such as object recognition. The performance 
of deep learning algorithms has been boosted with the introduction of additional layers or residuals 
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from earlier layers continued to improve the performance (He et al., 2016). However, as the complexity 
of models has increased, the model interpretability has decreased, and as a result such black box 
models have become problematic in high-stakes decision-making domains, where safe and reliable 
performance are critical due to the high cost associated with errors (Guidotti et al., 2018). This is 
exacerbated by the realization that the patterns learned by discriminative deep architectures are less 
robust than what previously thought and vulnerability to adversarial attacks is the rule rather than the 
exception. In some cases, changing a single pixel is enough to fool a trained model (Su et al., 2019). 
Attacks can even be carried out in the real world by, for example, attaching a piece of black tape to 
a stop sign (Eykholt et al., 2018).

There are many ways we may wish to employ Explainable Artificial Intelligence (XAI) methods, 
and the choice of method and nature of the explanation should be informed by the problem context. 
Many different approaches to interpretability have emerged to meet this demand, and they can be 
categorized along several dimensions such as global vs. local, model-specific vs. model-agnostic, 
and intrinsic vs. post-hoc (Molnar et al., 2020; Rai, 2020). For deep neural networks, intrinsic 
interpretability may not be attainable. It has been noted that model interpretability and model flexibility 
or accuracy tend to be inversely related (Freitas, 2014). As the complexity of classification models 
increases, high accuracies in predictions can be achieved, but interpretability suffers. For example, 
Slack et al. (2019) investigate and conclude that decision trees and logistic regression are locally 
interpretable models while neural networks are not.

In contrast to global explainability techniques, which seek to explain the entire model (either by 
designing the model to be intrinsically interpretable or through an interpretable surrogate model), 
local explainability techniques provide explanations for individual predictions. Ribeiro et al., (2016) 
introduce local Interpretable Model-Agnostic Explanations (LIME) as a simple local explainability 
technique that generates simulated data points using random perturbations in the neighborhood of an 
instance to be predicted by the black-box model and fits a weighted linear regression on the simulated 
data to create explanations for the prediction. One of the main advantages of LIME is being model 
agnostic and hence, it may diminish the need for interpretable models. Usually, local explainability 
techniques provide interpretations of how an individual sample is analyzed, and the analysis may 
convince an expert to determine whether the model focuses on the right components or segments of data 
to make the decision. For example, Ribeiro et al. (2016), show that husky vs wolf image classification 
was done based on the signal of the background rather than focusing on the features of the animal. In 
other words, the learned model recognizes a domestic environment (e.g., home) compared to a wild 
environment (e.g., forest). This helps the expert determine whether the learned model is reliable or 
not, and this makes it a spectacular tool for individual analysis of samples. However, if the goal is 
to uncover systematic issues with the model, an expert must check the explanation of every sample.

Deep learning models may be trained on huge datasets of which the size may range from terabytes 
to petabytes. Monitoring explanations of these models by hand during the training process is out 
of the question. Even whenever it is possible, what matters is how those trained machine learning 
models behave in the wild for previously unseen data since critical decisions may rely on these 
models. Regardless of the possibility of manual checking, such a costly approach voids one of the 
main benefits of using machine learning–scalability.

This paper presents an automated explainability audit framework known as ExplainabilityAudit 
(DR Don et al., 2022) to investigate local interpretability in image recognition. As shown in Figure 
1, the proposed method analyzes the reliability of classification by processing the explanations. 
After analyzing the explanations, it returns satisfactory if the explanations are good or weak if the 
explanations are poor. This technique requires training another model based on explanations. If this 
audit model determines that an explanation of a decision by the main model is weak (not reliable), 
this would require the involvement of a human expert to analyze the prediction and explanation. 
A human expert would only be required to step in for relatively few cases instead of potentially 
thousands or millions.
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We introduce a version of ExplainabilityAudit, that uses the original LIME toolkit to generate 
local explanations for rooftop images that are classified by a deep convolutional neural network. 
The goal of the rooftop classification is to distinguish flat roofs among various other types of roofs 
in a nadir rooftop image dataset where the footprint of the rooftops is often surrounded by various 
neighboring objects such as ground, trees, vehicles, driveways, etc. In this case, the regions other than 
the rooftop are considered to be the background. The proposed method uses LIME in the following 
manner. First, it splits a candidate image into many superpixels and creates a synthetic dataset using 
random perturbations of the candidate image. Then a locally weighted interpretable linear model is 
trained on the new image dataset. The superpixels that correspond to the highest estimated coefficients 
are chosen to be the top local explanations. Then our method analyzes the texture features of the 
top local explanations to determine if they belong to the rooftops or background. Then the audit 
label satisfactory is produced when most of the local explanations represent the rooftops or similar 
objects. Our experiment is limited to extracting the largest segment of the local explanations for each 
validation image. In determining the local explanations, we demonstrate that a patch-based auditing 
approach to analyze texture features is more efficient than applying Convolutional Neural Network 
(CNN) algorithms on the local explanations as a whole.

RELATED WORK

The high accuracy of deep learning models is not necessarily an indication of extracting and learning 
proper features. Deep learning models depending on unreliable and ungeneralizable features may yield 
critical Type I and Type II errors, which could lead to adverse effects, especially in medical applications 
(Burkart & Huber, 2021; Holzinger et al., 2019). Explainability is the extent to which the internal 
mechanics of a machine or deep learning model can be explained in terms more understandable to 
humans (Rosenfeld & Richardson, 2019). Especially for artificial neural networks, interpreting how 
the model behaves with respect to input data is not simple. Although fully interpreting neural networks 
directly in terms of their features is not as straightforward as in regression models, explainability 
tools give a better picture of a model’s patterns. Thus, explainability tools enable us to convert black 
box models more into grey boxes.

Explainability generally falls into two main types of tasks: model understanding (global 
explainability) and decision understanding (local explainability). Model understanding or global 
explainability involves finding out how the model behaves for general data. Particularly, this means 
the task of recognizing the patterns in its predictive features or model parameters on classification. 

Figure 1. The role of explainability audit in image recognition pipeline
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On the other hand, decision understanding or local explainability is concerned with the task of the 
model behavior only on a particular data instance. Here, the aim is to find how the input features affect 
a single data point’s classification. Most of the research in explainability has focused on decision 
understanding. Simple tools like what-if (Wexler et al., 2019) offer dashboards called data point 
instance editor and feature statistics which help deduce explainability indirectly. Another popular 
method to generate explanations is using Shapley values (Lundberg & Lee, 2017). The concept of 
Shapley values derives from game theory and is based on probability theory. Shapley values are the 
average marginal contribution of a feature across all possible coalitions. AWS SageMaker Clarify 
(Hardt et al., 2021) uses Shapley values to explain a black box model.

Deep Learning Important Features (DeepLIFT) by Shrikumar et al., (2017) is a method that is 
used on a fully trained Keras model. In a single backward pass, importance scores are calculated 
for all input features. Thus, it is computationally efficient. The authors gave an example of a piece 
of text representing a genome sequence and a neural network for the classification of the sequence. 
Every alphabet (input feature) in the sequence gets a score based on the backward pass calculation. 
The scores indicate how proportionally or inversely each alphabet affected the classification label. 
DeepLIFT does not require any manual intervention. Contrarily, TCAV (Testing with Concept 
Activation Vectors) by Kim et al., (2017) uses pre-defined human concepts to train linear classifiers 
that separate those concepts from random inputs. If the concepts were learned, it indicated that 
correct explanations were learned by the model too. Kim et al. (2017) demonstrated the tool with a 
computer vision task. For example, the manually created concept of stripes includes a group of images 
of various stripe patterns. The group of random input includes images that are not stripes. TCAV 
learns a linear classifier that separates stripes from random input. Another tool called Path-Integrated 
Gradients (Sundararajan et al., 2017) uses a pre-defined human baseline input to calculate attribution 
scores for each feature. The baseline input is necessary to characterize situations when the absence 
of a feature can be informative. Alternatively, counterfactual methods generate adversarial scenarios 
or instances to explain the prediction with more stability than most feature importance-based XAI 
methods (Vermeire, et al., 2022, Singla, et al., 2023).

The main reason why deep learning models are considered black boxes is that their behavior 
is not linear, and hence it is hard to come up with a global but simple interpretation. For decision 
understanding of a single data instance, it is not necessary to understand the complete non-linear 
behavior of the model. Thus, Ribeiro et al., (2016) provided an explanation of the model around the 
local region of the data instances being scrutinized. These explanations have locally linear fidelity: 
linear behavior of the model in the vicinity of the prediction instance. LIME learns the locally linear 
classifier by minimizing a loss function that minimizes the error between the actual model in the 
region and the explainable model. More comprehensive explainability tools like LIT (Tenney et al., 
2020), and ELI5 (Korobov, 2017) include LIME to enhance model explainability.

However, LIME has some potential pitfalls. Therefore, several important modifications have 
been introduced in the past few years to address those issues. DLIME (Zafar & Khan, 2019) is a 
deterministic version of LIME in which the random perturbation is replaced with agglomerative 
hierarchical clustering to create clusters within the training dataset and then applying K-Nearest 
Neighbor (KNN) to find the relevant cluster for the new observation. Then more stable explanations 
are generated by training a linear model over the selected cluster. ALIME (Shankaranarayana & 
Runje, 2019) applies an alternative approach to reduce instability in generated explanations while 
maintaining local fidelity. In this method, many synthetic data points are sampled from a Gaussian 
distribution and weighted for the locality by a denoising autoencoder. Lee et al. (2019) stated that 
the mean and the standard deviation of weighted superpixels of a test image produced by LIME 
demonstrate that the generated explanations are relatively stable. MPS-Lime (Shi et al., 2020) is a 
modified perturbated sampling for LIME that avoids correlation between the superpixels. In this 
method, the superpixels are represented by an undirected graph, and the perturbed sampling is 
formalized as a clique-set construction problem. Also, BayLIME (Zhao et al., 2020) is a Bayesian 
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extension to the LIME framework that applies prior knowledge and Bayesian reasoning to enhance 
the stability of the explanations.

METHODOLOGY

In this section, we discuss the proposed method by presenting its architecture and providing 
explanations for the design of each algorithm used.

Local Explainability Tool Kit
Although the proposed method may be integrated with any upgraded version of LIME or other 
explainability toolkits, we selected the original LIME framework as the local explainability toolkit 
in the proposed method.

Local Interpretable Model-Agnostic Explanations (LIME)
We assumed that the image recognition algorithm was a deep neural network represented by a real 
function f  such that f X Y: ,® X dÍ   and Y Í  , where d  is the number of RGB pixels of the 
image predicted. For candidate image x XÎ ,  let f x( )  to be the probability that x  belongs to a 
certain class. In our method, LIME would split x  into ¢d  number of superpixels such that each 
superpixel was a contiguous patch of similar pixels as shown in Figure 2. An interpretable 

Figure 2. LIME framework for generating local explanations
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representation of x  given by a binary vector ¢x  was obtained such that ′ = { }
′

x
d

0 1, ,  where 0 and 1 
represent the absence and presence of superpixels respectively. A random perturbation z  was generated 
by blacking out some superpixels in x.  Its interpretable representation ¢z  is also a binary vector as 
previously mentioned. Then a set of N  number of random perturbations Z  was generated by sampling 
uniformly at random around ¢x  in order to train a locally weighted linear regression model g GÎ ,  
where f  is the class of potential interpretable models. Also, the perturbations in the original 
presentation were recovered and predicted by using the image recognition algorithm f  to obtain a 
target set f x( )  for the prediction of x.  For a weight function p

x
, an exponential kernel defined on 

some distance function D,  was introduced as a proximity measure π σ
x
z D x z( ) ( )( )= −exp , /

2 2 , 

where D x z,( )  is the distance between x  and z,  while s  is the kernel width (Ribeiro et al., 2016). 
To measure how unfaithful the local linear model g  to the image recognition algorithm f ,  the 
following loss function h was used:

η π πf g z z f z g z
x x

z z Z

, ,
,

( )( ) ( ) ( ) ( )( )= − ′
′∈

∑
2

	 (1)

Note that every linear model g  is not simple enough to be interpretable. Therefore, another 
loss function W  known as the measure of complexity was introduced to determine the complexity 
of the linear model g.  Ω g( )  is the number of nonzero weights for a linear model. It was added to 
the loss in equation (1.1) to obtain the total loss. Finally, a linear model x  was trained on the dataset 
consisting of ¢z  and f z( ).  The local explanations were obtained from the linear model that 
minimizes the total loss:

ξ η πx
g G

f g g
x( ) ( ) ( )( )=

∈

+arg min , , Ω 	 (2)

Images With Local Explanations
Setting x  to be a linear regression in equation (1.2), the top local explanations were extracted as 
superpixels that represent the highest k  estimated regression coefficients. The set of local explanations 
generated for the image x  by the image recognition algorithm f  can be visualized as a single image 
denoted by .  An audit model was built to classify the image   by admitting the class of x  to evaluate 
the local explanations generated. The purpose of the audit model is to determine whether f  has 
focused on the proper regions in the image or not.

Although LIME shows some instability in the generated explanations, a typical image   can be 
considered as a sparse representation of the corresponding image x,  since a very high percentage of 
pixels in x  is blacked out in .  The presence of an overwhelming black background in   could 
aggravate the task of feature extraction. Thus, we attempted two different approaches presented in 
the following subsection.

Explainability Audit Method
Superpixel-Based Auditing vs. Patch-Based Auditing
We studied two possible techniques to analyze the local explanations produced by the local 
explainability toolkit: Superpixel-based auditing and patch-based auditing. In superpixel-based 
auditing, we have considered a superpixel of local explanations as a whole can be satisfactory for 
auditing. Even though this is rather an intuitive method, the selected superpixels need to be 
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preprocessed before feeding into CNN. Thus, a fixed-size bounding box should be used to crop the 
superpixels and generate a set of images. A major problem of this method arises due to the wide 
range of sizes of the superpixels. A possible solution to address this issue is to upsample or downsample 
the selected superpixels until they barely fit the bounding box and then apply padding pixels to fill 
the background. However, the upsampling of images by a great percentage could distort the features 
of the original class of the low-resolution image as the upsampled images possess high-variance 
information (Menon et al., 2020). This could eventually result in poor performance of the CNN 
classifier. Therefore, our experiments only focused on the patch-based auditing method. This approach 
focused on some superpixels of the local explanations that are large enough to contain the texture 
information necessary to identify them correctly. In fact, the patches in our use case are two small to 
be classified using CNN. Therefore, we applied the following preprocessing of the local explanations 
to enable ExplainabilityAudit for the image .  as shown in Figure 3.

Image Segmentation
First, the image   was converted to an 8-bit greyscale image in which each pixel is represented 
by an integer 0 – 255. Then appropriate masking was applied to the greyscale image to determine 
the extreme outer contour of each segment of the local explanations. Also, it is possible that 
these image segments contain several neighboring superpixels. For our experiments, only the 
image segment with the largest contour was selected and then a rectangular bounding box was 
applied to extract the image segment. This preprocessing step can technically be applied to each 
image segment that contains at least a single p p´  image patch, where p  is the patch size in 
pixels. It outputs grayscale image segments.

GLCM Feature Extraction
In this preprocessing step, the grayscale image segments were used to produce image patches. From 
each grayscale image segment, the maximum number of qualified image patches were produced. 
Then the Grey Level Co-occurrence Matrix (GLCM) features were extracted from each image patch 
to construct the GLCM texture feature dataset as shown in Figure 4. The techniques used in this step 
are outlined below:

•	 Grid Search for Maximizing Number of Patches: The local explanations present in the grayscale 
image segments have rough boundaries separating the explanations from the black background. 
First, we split the grayscale images into a grid containing p p´  cells. These cells were then used 

Figure 3. The architecture of the explainability audit
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to obtain image patches. An image patch can often contain pixels from the black background. 
Thus, we introduced a threshold q  for the highest percentage of black pixels to be allowed in a 
patch. To maximize the number of patches that can be obtained from a given grayscale image 
using the grid, we calculated all possible solutions performing a grid search. Initially, the point 
origin 0 0,( )  of a virtual grid of p p´  cells was aligned with the top left corner of a given 
grayscale image segment. Assuming the coordinates of the top left corner as m n, ,( )  where m n,  
are integers. We changed the position of the grayscale image segment relative to the grid such 
that 0 £ £m p,  and 0 £ £n p.  At each relative location, the number of valid image patches 
were computed and the maximizer m n,( )  was determined. For this study we used p = 10,  and 
produced the image patches choosing the maximizer for the origin of the grid.

•	 Creating GLCM Texture Feature Dataset: We realized that 10 10´  image patches with 
8-bit are not suitable to extract the widely used GLCM features (Hall-Beyer, M., 2000) available 
in scikit-image Python library and presented in Table 1. The GLCM of such an image patch 
would be a sparse matrix and some Haralick features might decrease in amplitude and generate 
a poor representation of the texture of the image patch (Rosenfeld & Richardson, 2019). 
Therefore, we transformed the selected greyscale image patches to 4-bit to produce its GLCM 
as shown in Figure 4.

For a greyscale image patch of k k´  pixels, the GLCM is a square matrix that needs to store 
the frequency at which pairs of pixels with certain values in a given spatial orientation.

Thus, the size of the GLCM simply becomes the bit depth of the greyscale image patch. 
We used two parameters to construct the GLCM: distance and angle. The distance measured 
the magnitude of the displacement between two pixels (from 2 to k -1 ) and the angle measured 

Table 1. The selected GLCM features

GLCM Feature Formula
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n
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=

−

∑
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∑

Angular Second Moment (ASM) p
ij

i j

n
2

0

1

, =

−

∑

Energy ASM

Note: In formulae, p
ij

 is the probability of values i  and j  occurring in adjacent pixels in the original image within the window defining the 
neighborhood. n  is the order of the GLCM.
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the displacement’s direction ( 0 45 90 135   , , , ) made with the axis. The extracted GLCM 
features can be used to construct a GLCM texture feature dataset for each candidate image as 
shown in Figure 5.

Audit Model
In the first stage of the audit model shown in Figure 6, a supervised machine learning algorithm 
called audit classifier was used to classify each patch represented by the GLCM texture feature dataset 
into the union of the set of image labels and the background. In the second stage, the entire explanation 

Figure 4. The construction of GLCM

Figure 5. The GLCM feature extraction
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was classified based on max-voting of the predicted patches. The next step was to compare this result 
with the image label. If the result matched the image label, then the explanation was considered 
satisfactory or weak otherwise. In the output, the satisfactory class indicates that the local explanation 
supports the prediction of x  by f .  Whereas the weak class denotes that it may not be possible to 
make a correct decision or decision could be unreliable.

Figure 7 summarizes the proposed method by providing the algorithm of the Explainability 
Audit method.

EXPERIMENTS AND EVALUATION

In this section, we explain the rooftop dataset used in the experiments, the tuning of LIME algorithm, 
and the classifiers used for auditing explanations. Then we provide the results of our experiments 
before the discussion. To conduct experiments, we used AWS/Amazon SageMaker instance p3.2xlarge. 
The machine learning models were trained using TensorFlow and Keras 2 on Python 3 with CUDA 
9.0 and MKL-DNN.

Experimental Setup
Datasets
The original dataset used in this study was exclusively maintained in-house by The Travelers Indemnity 
Company with the courtesy of Nearmap US Inc., Therefore, either this dataset or its citation is not 
publicly available. The original dataset has a nadir rooftop imagery consisting of 3715 RGB images 
split into 2956 training images and 759 validation images. The images have a fixed size of 640 × 
640 pixels. The label sets have two nearly balanced classes: flat and non-flat. Each rooftop image 
was preprocessed to produce a polygonal bounding box consisting of the footprint of the rooftop and 
possible background objects. This dataset was used to train our image recognition (rooftop detection) 
algorithm. To extract patches, another dataset was created by randomly selecting and processing some 
200 training images. In this case, the image patches were extracted from rectangular regions of either 

Figure 6. The audit model
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rooftops or background but not both. Also, a randomly selected sample of 88 images belonging to 
the original validation dataset was drawn to construct the evaluation dataset.

When extracting image patches, the threshold of accepting black pixels q = 5%  was used. The 
training GLCM texture dataset consisted of 7162 observations, each representing a training patch 
belonging to one of the 200 training images and the GLCM features given in Table 1 were extracted 
with all possible combinations of distance 2 and 3 and recommended angles were used. The most 
effective combination of distance 2 and angle 0  was used train the audit classifier. A random sampling 
was used to create a training GLCM texture feature dataset with 0.7 observations, and the rest was 
used for validation of the audit classifier. Note that our experiments were limited to the largest segment 
of the local explanations in each image .

Tuning LIME Algorithm

The following parameter settings were used for the LIME algorithm. The number of superpixels ¢d ,  
generated for each image x  was in the range (80, 120). The number of random perturbations N  was 
set to be 1000. The weighted linear g  was linear regression. In the weight function p

x
,  the distance 

function D  and the kernel width s  were cosine and 0.25 respectively. Setting k = 8  led to the 
extraction of the best local explanations.

Figure 7. The algorithm of explainability audit method
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Rooftop Recognition
The rooftop recognition algorithm was a deep neural network created by modifying a pretrained 
ResNet50 architecture using transfer learning. In this process, the top layer of the ResNet50 was 
replaced by three fully connected layers including a new top layer for binary classification. Then only 
the classification head was trained with the rooftop training dataset. After training for 15 epochs, the 
performance of this image recognition algorithm was validated using the complete test dataset, and 
the following performance measures were observed as follows. Accuracy: 0.8326, Precision: 0.7904, 
Recall: 0.8225, F-1: 0.8109, and ROC: 0.9159.

Audit Classifier
For the audit classifier, three binary classification algorithms known as Support Vector Machine 
(SVM), Artificial Neural Network (ANN) with one hidden layer and 10 neurons per layer, and 
K-Nearest Neighbor (KNN) were used. These algorithms were trained on the same training GLCM 
dataset using the following hyperparameters. For SVM with RBF kernel, gamma and cost were 
chosen to be 1 and 1000 respectively. For ANN built using Scikit Learn MLPC module, the default 
batch size, optimization, and learning rates were applied. The number of epochs is set to be 1000. 
For KNN, K is selected to be 15.

Results
Since the difference between image labels was ignored in this experiment, the local explanation was 
considered satisfactory if most patches belong to a rooftop. Also, the local explanation was considered 
weak if most patches belonged to the background. We tested the audit model with three different 
machine learning methods, using as the audit classifier: SVM, KNN, and ANN, applying the same 
GLCM training and GLCM validation datasets. The results for classifying individual patches are 
shown in Table 2.

For each method in Table 2, the experiments were conducted under different hyper-parameter 
settings, and for each method, only the best performance was presented. The SVM equipped with 
RBF kernel exhibited the best performance in predicting image patches of rooftops and backgrounds. 
The corresponding cost and gamma were noted as 1000 and 1 respectively. Table 3 shows the 
performance of the audit model on the validation images. In this case, the audit model used the 
two-stage prediction presented in Figure 6. The SVM-based audit classifier outperformed the 
other variants by a significant margin in accuracy, recall, and F1 score. Therefore, we decided to 
analyze SVM further as the most effective audit classifier and conducted 5 fold cross-validation. 
The resulting mean values of accuracy, precision, recall, and F1 score were computed as 86.6, 
88.3, 95.7, and 91.8 respectively.

Table 2. Performance of the different audit classifiers on the validation GLCM texture feature dataset

Audit Classifier Accuracy Precision Recall F1

SVM c = =( )10 13, g 87.5 88.2 97.1 92.4

KNN k =( )15 68.2 95.6 62.3 75.4

ANN iter =( )103 79.5 91.8 81.2 86.2
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DISCUSSION

Audit of explainability is a type of sanity check for the original classifier. The major purpose of this 
auditing is to detect cases where the original classifier is likely to misclassify. However, this may 
lead to cases where validation by a human expert may be deemed unnecessary although validation 
could be beneficial, or vice versa. In this section, we cover four cases with respect to the quality of 
audit and explanation for validating results by a human expert as given in Table 4. In this discussion, 
rather than focusing on successful auditing, we provide one example per case. Figure 8 and Figure 
9 show validation images, selected segments of the local explanation, with corresponding image 
patches. Any image patch predicted as the rooftop is marked with a green pixel, and any image patch 
predicted as the background is marked with a red pixel.

Case 1 - Validation is recommended: The top row of Figure 8 illustrates a local explanation 
indicating a view of a rooftop obstructed by branches or shadows of trees. In this case, the 
audit classifier technically classifies the segment of local explanation as weak since most 
image patches are like the ones that come from the background. Regardless of the original 
model classification, such an image requires additional review to avoid errors. Hence, 
validation is recommended.

Case 2 - Validation is unnecessary: In the bottom row of Figure 8, the audit classifier predicts 
this explanation as satisfactory. In this case, the image has rooftop-like regions including the 
rooftop and the driveway. Since the driveways have similar textures as flat roofs this explanation 
is considered satisfactory. We should note that this auditing does not check the ability of the 
original classifier to distinguish a driveway from a flat roof. This is rather an indication that the 
classifier analyzes proper regions from the image. Since the classifier analyzes proper regions 
for determining the rooftop type, validation is unnecessary.

Case 3 - Validation is missed: The top row of Figure 9 illustrates a segment of the local explanation 
revealing the background but classified incorrectly as satisfactory. Normally, it would be beneficial 
to validate this case by an expert regardless of the original model’s classification.

Table 3. Performance of the audit model using different audit classifiers on the evaluation dataset

Method Accuracy Precision Recall F1

SVM c = =( )10 13, g 80.8 79.1 86.0 82.4

KNN k =( )15 73.2 74.2 75.0 74.6

ANN iter =( )103 79.1 78.5 82.8 80.6

Table 4. Cases of validation

Validation Case Audit Result Ground Truth

Recommended Weak Weak

Unnecessary Satisfactory Satisfactory

Missed Satisfactory Weak

Extraneous Weak Satisfactory



International Journal of Multimedia Data Engineering and Management
Volume 14 • Issue 1

14

Figure 8. Results of the explainability audit: Special Cases 1 and 2

Figure 9. Results of the explainability audit: Special Cases 3 and 4
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Case 4 - Validation is extraneous: The bottom row of Figure 9 illustrates a segment of the local 
explanation revealing the rooftop but classified as weak. This leads to an unnecessary review 
by an expert.

CONCLUSION AND FUTURE WORK

In this paper, we propose a framework for the automation of auditing local explainability in image 
recognition. As the volume of image data increases, it is impractical for a human expert to check the 
local explanation for each prediction made by the image recognition system. Random or arbitrary 
checks are insufficient to guarantee an overall local explanation. The proposed method analyzes 
whether the right segments or components of images are processed by the image recognition models 
to make the prediction. Our experimental results confirm that the current version of the proposed 
method is capable of predicting the reliability of the image recognition algorithm with a satisfactory 
recall of 95.7%. In the future, the possibility of integrating different explainability toolkits is prominent. 
Further, the experiments need to be conducted in multiclass settings, identifying the weaknesses of 
the image recognition algorithm with respect to different class labels.
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