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ABSTRACT

With the rapid development of artificial intelligence and deep learning, image-text matching has 
gradually become an important research topic in cross-modal fields. Achieving correct image-
text matching requires a strong understanding of the correspondence between visual and textual 
information. In recent years, deep learning-based image-text matching methods have achieved 
significant success. However, image-text matching requires a deep understanding of intra-modal 
information and the exploration of fine-grained alignment between image regions and textual words. 
How to integrate these two aspects into a single model remains a challenge. Additionally, reducing 
the internal complexity of the model and effectively constructing and utilizing prior knowledge are 
also areas worth exploring, therefore addressing the issues of excessive computational complexity in 
existing fine-grained matching methods and the lack of multi-perspective matching.
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INTROdUCTION

With the continuous advancement of technology, robotics has made significant progress in various 
fields. Especially with the fusion of multimodal perception and artificial intelligence, robots have 
evolved from simple tools for task automation into partners with multisensory capabilities and 
intelligent interactions (B·Hme et al., 2012; Zhang et al., 2022; Paolanti et al., 2017). For example, 
tour guide robots, as prominent representatives of robotics technology, have garnered widespread 
interest in the tourism and cultural heritage sectors. In this challenging domain, multimodal robots with 
multi-view image-text matching capabilities are emerging, providing richer and more precise ways 
of information exchange for tour guide robots. Robots typically interact with their environment and 
humans through visual and textual data. Understanding images enables robots to interpret the physical 
world, while comprehending text helps them communicate with humans and access information on the 
internet. A deep understanding of both modalities allows robots to have a comprehensive perception 
of their surroundings, combining visual and textual information to make sense of complex situations. 
However, images are a form of visual data, while text is linguistic data, and they represent information 
with inherent differences. To bridge the gap between images and text, image-text matching technology 
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for robots requires a deep understanding of both modalities and their seamless integration, which 
adds complexity to the task of feature extraction (Russell et al., 2002; Yang et al., March 2019). 
Furthermore, reducing the model’s complexity while enhancing its representation capabilities and 
interpretability is a significant challenge in this context (Paolanti et al., 2019). For the task of image-
text matching, traditional methods mainly relied on manually annotating images and then comparing 
the text words with the manually assigned image labels (Changet al., 1981; Li et al., 2016). These 
methods involve fixed extraction of features from images and text words followed by matching, making 
them highly dependent on the quality of manually labeled images. These traditional methods also 
suffer from several disadvantages: weak feature extraction capabilities, poor noise resistance due to 
noise in manual annotations, mostly linear structures leading to weak generalization abilities. These 
drawbacks limited their applicability in real-world scenarios. Subsequently, researchers started to 
explore more sophisticated learning-based approaches for achieving image-text matching. For instance, 
Rasiwasia et al. used scale-invariant feature transform algorithms and document topic generation 
models to represent images and text, and then applied Canonical Correlation Analysis to learn the 
cross-modal correlations (Rasiwasia et al., 2010). Zhuang et al. leveraged commonality in multimodal 
data to construct a unified cross-modal association graph, which helped explore the connections 
between visual and textual data (Zhuang et al., 2008). Yang et al. established a cross-modal index 
space by mining heterogeneous multimodal data, subsequently generating a semi-semantic graph for 
cross-modal retrieval (Yang et al., 2010). While these methods have provided valuable insights and 
made significant progress in image-text matching research, they are often limited to specific small 
datasets. They may have excellent performance on those datasets but struggle to generalize to broader 
applications and different domains.

With the rapid advancement of deep learning, cross-modal research has become a popular 
field (Ma et al., 2022). In the feature learning of multimodal data, deep learning has the capability 
to nonlinearly map low-level features of multimodal data into high-level abstract representations 
(Salman et al., 2022). Image-text matching tasks, as a fundamental task in cross-modal research, have 
garnered extensive attention from scholars. In terms of images, early models utilized Convolutional 
Neural Networks (CNNs) to extract image features, often pre-trained on image classification tasks. 
For example, models such as 2WayNet (Eisenschtat et al., 2017), sm-LSTM (Huang et al., 2017), 
and SAN (Ji et al., 2019) used pre-trained VGG (Simonyan et al., 2014) networks to extract image 
features, while other models like VSE++ (Fartash et al., 2018), DPC (Zheng et al., 2020), and SCO 
(Huang et al., 2018) employed deep residual networks (ResNet) (He et al., 2016) pre-trained on the 
ImageNet (Deng et al., 2009) dataset for image feature extraction. On the text side, early models 
like m-RNN (Mao et al., 2014) and LRCN (Donahue et al., 2017) used recurrent neural networks 
(RNNs) or Long Short-Term Memory (LSTM) (Hochreiter, et al. 1997) networks to represent textual 
information and mapped each text sequence into a feature vector. However, these methods typically 
represented images and texts as global vectors, resulting in the loss of fine-grained information among 
image regions and text words, leading to relatively lower accuracy.

Due to the limitations of the aforementioned pre-trained networks, many researchers have 
attempted to use finer-grained feature representations: dividing images into multiple regions and 
sentences into words and phrases for representation. Regarding images, SCAN (Lee et al., 2018) was 
the first to use the object detection pre-trained model Faster-RCNN (Ren et al., 2015) to extract image 
features. SCAN utilized Faster-RCNN to extract 36 salient regions from an image, encoding each 
region into a feature vector. This approach allowed for the inclusion of detailed image features within 
these 36 salient regions. For text, VSE++ introduced the use of Bidirectional Gated Recurrent Units 
(Bi-GRU (Schuster et al., 1997)) to extract text feature vectors. Bi-GRU consists of both a forward 
and a backward gated unit, aggregating information from both directions of the sentence words to 
represent the word’s features. Following this, almost all image-text matching models have used Faster-
RCNN and Bi-GRU for extracting image and text features. Models such as CAMP (Wang et al., 2019), 
IMRAM (Chen et al., 2020), VSRN (Li et al., 2019), and others employed these pre-trained models 
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and achieved state-of-the-art results at the time, to some extent benefiting from Faster-RCNN and 
Bi-GRU. The above-mentioned methods have made significant advancements in feature extraction 
from both images and language. However, due to the complexity and sequential nature of language, 
there is still room for further exploration and improvement in language feature extraction models.

Recently, neural network has been attracted considerable attention (Bin et al., 2022). The 
Transformer model has achieved state-of-the-art results in various natural language processing tasks 
(Vaswani et al., 2017), such as sentence classification, sentence prediction, text translation, and more. 
BERT, based on the Transformer architecture, is a prominent natural language pre-training model 
composed of multiple stacked self-attention layers. BERT is trained on two unsupervised prediction 
tasks: the “Masked Language Model” and the “Next Sentence Prediction,” using Wikipedia data 
and text corpora for pre-training (Devlin et al., 2018). BERT’s results demonstrate its ability to 
generate longer-range and more accurate contextual representations. Consequently, the latest image-
text matching models have attempted to utilize advanced BERT for text feature extraction, such as 
TIMAM (Sarafianos et al., 2019), SAEM (Wu et al., 2019), MMCA (Wei et al., 2020), and others. 
The above analysis shows that Faster-RCNN and BERT both excel in the task of image-text matching. 
However, considering the nature of tasks for multi-modal robots in a multi-visual context, there is an 
urgent need to develop a simple and efficient inference model.

Transformer model is popular in image-text matching due to the introduction of an attention 
mechanism with strong reasoning ability (Jie et al., 2021; Wang et al., 2022; Yang et al., 2023; 
Messina et al., 2021). For example, in (Yang et al., 2023), the authors employ a transformer encoder 
to extract intra-modality relationships present within both the image and text. They then achieve 
alignment using an efficient aggregation technique, enhancing alignment efficiency while maximizing 
the utilization of intra-modality information. In (Messina et al., 2021), in pursuit of separate feature 
extraction for large-scale retrieval systems, the authors introduce a method, Transformer Encoder 
Reasoning Network (TERN) built upon the Transformer Encoder. TERN effectively reasons on 
distinct modalities while achieving a unified abstract concept space through shared weights in deeper 
transformer layers. These references highlight the excellent modeling capabilities of the Transformer 
model, but there is currently limited literature on the use of Faster-RCNN, BERT, and Transformer 
for image-text matching in a multi-visual context suitable for robots.

Based on the discussions mentioned above, this paper proposes a multi-view image-text matching 
method based on the Transformer architecture. The main contributions are as follows:

(1)  The proposed scheme utilizes Faster-RCNN to enhance the efficiency of image feature extraction, 
while employing the BERT model to improve the efficiency of text feature extraction, followed 
by a selection process to filter and retain valuable features.

(2)  The use of a Transformer inference network to map images and text into a common space, 
obtaining compact vectors for both modalities. This inference network not only captures rich 
image and text information but also avoids redundant calculations of local similarities between 
image regions and text words, effectively reducing the computational burden of the model.

(3)  To explore text descriptions from different viewpoints, this method introduces a multi-view 
matching module. This module leverages dilated convolutions to model image information from 
different perspectives, leading to more accurate similarity calculations between images and text.

PROBLEM STATEMENT ANd RELATEd THEORy

Problem Statement
Exploring methods for MVITM aims to achieve a deeper understanding and exploration of the 
relationships between images and text to address complex problems in visual understanding and 
natural language processing. Research in this field strives to enable computer systems to consider 
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information from multiple visual and linguistic perspectives, similar to how humans do, in order to 
accomplish more advanced intelligent tasks.

Taking a tourism navigation robot as an example, a tourism intelligent robot equipped with 
MVITM methods can provide travelers with a more personalized and intelligent tourism experience. 
For example, as shown in Figure 1, the image is described from three different angles in the text. 
The first one focuses on describing the architectural style in the image, using terms like “style of 
building” and “unique”. The second angle emphasizes the appearance and location attributes of the 
building in the image, such as “red” and “middle”. The third angle provides a more abstract summary 
of the entire image.

Faster-RCNN Model
CNN is a widely used deep learning model for tasks such as image classification, feature extraction, 
and pattern recognition. However, it focuses on the entire image and cannot pay attention to the 
important content within the image. As a result, significant regions may not be fully extracted, and 
many irrelevant region features may be generated. This type of global feature extraction, driven by 
non-salient regions, is referred to as “top-down feature extraction.”

Different from CNN, Faster-RCNN is a feature extraction approach that focuses on salient, 
prominent regions, and it is known as “bottom-up feature extraction.”(Anderson et al., 2018). From 
Figure 2, it generates candidate regions in the first stage using the Region Proposal Network (RPN) 
and then precisely locates and classifies objects in the second stage through Region of Interest (ROI) 
pooling, classification, and regression heads. Here are the main components and working principles 
of Faster-RCNN:

Figure 1. Textual descriptions from different perspectives

Figure 2. The flowchart of Faster-RCNN
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(1)  CNN: Faster-RCNN is built upon a CNN, typically pretrained models like ResNet or VGG, to 
extract features from images. This CNN network is usually pretrained on a large dataset to learn 
general features.

(2)  Region Proposal Network (RPN): Faster-RCNN introduces RPN, which is a subnetwork 
specialized in generating candidate bounding boxes. RPN’s job is to propose regions in the image 
that may contain objects, considering them as potential object locations. RPN accomplishes this 
task using anchor boxes and related classification and regression tasks.

(3)  Region of Interest Pooling (ROI Pooling): Once candidate regions are obtained, Faster-RCNN 
employs ROI pooling to crop and resize these regions into feature maps with a fixed size. This 
ensures that candidate regions of different sizes have the same input dimensions for subsequent 
processing.

(4)  Classification and Regression Heads: Candidate regions are processed through classification 
heads to determine the object’s category and regression heads to precisely locate the object’s 
position. These heads typically consist of fully connected neural network layers.

(5)  Non-Maximum Suppression (NMS): To eliminate overlapping candidate boxes, Faster-RCNN 
uses the NMS algorithm to select the final detection results for each object. This ensures that 
each object is detected only once.

BERT Model
BERT is a bidirectional language pre-training model based on the Transformer architecture. Unlike 
fixed word embeddings in models like Word2Vec (Pennington et al., 2014) and GloVe (Wu et al., 
2016), BERT consists of multiple stacked Transformer layers and is designed to learn deep bidirectional 
representations of unlabeled text by leveraging context information from all layers. It falls under the 
category of self-supervised language tasks.

The input to BERT is a continuous sequence of text, which can be a single sentence or a 
combination of multiple sentences. BERT’s input representation is constructed through a combination 
of three types of embeddings: character embeddings, segment embeddings, and position embeddings, 
as shown in Figure 3. Specifically:

(1)  Character Embeddings: Character embeddings are created using WordPiece (Hu et al., 2019) 
tokenization, which embeds 30,000 words into character vectors.

(2)  Segment Embeddings: Segment embeddings are used to differentiate between different sentences 
in the input. This is done in two ways: by using special tokens to separate each sentence and by 
adding a learnable embedding layer to each character to indicate which sentence it belongs to.

(3)  Position Embeddings: Position embeddings are added to each position in the input segment. 
These position vectors have a dimension equal to the maximum input segment length, which is 
typically set to 512.

In summary, BERT combines character embeddings, segment embeddings, and position 
embeddings to create rich input representations for understanding text with context, making it a 
powerful model for various natural language processing tasks.

Transformer Model
The attention mechanism is inspired by the way human visual perception works. Just like humans 
don’t randomly scan an entire scene when observing it, but rather focus on specific parts of the image 
based on their points of interest, attention mechanisms aim to allocate attention to specific parts of 
input data. With the rapid development of deep learning, attention mechanisms have found wide 
applications across various fields. The attention mechanism can be seen as a mechanism that assigns 
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appropriate weights to input information, enhancing the learning of important information while 
suppressing responses to irrelevant information. It allows models to selectively focus on relevant parts 
of the input, making it a powerful tool for tasks involving sequential data, such as natural language 
processing and computer vision.

In recent years, Transformer models have made significant advances in various tasks (Pan et 
al., 2023 & Cao et al.,2023). When given a set of feature vectors as input, the Transformer can learn 
the correlations between any two features within this set. As shown in Figure 4., the Transformer’s 
structure consists of two sub-layers: the multi-head self-attention layer and the feedforward neural 
network layer.

For each input vector, the vectors q , k  and v  can be obtained from the results of input vector 
X  is multiplied by the weight matrix WQ , WK and WV , respectively, which is expressed as

q k v X W W WQ K V, , , , ,( ) = ( )( )MatMul  (1)

Then, the attention score is expressed as

Score q k, ·( ) = q k  (2)

where q k·  denotes the dot product of q and k .
To ensure stable gradients during training, all the obtained relevance scores are normalized by 

passing them through the softmax function, resulting in normalized relevance weights. These weights 
are then multiplied with the v values of all words, thereby emphasizing the words that need attention 
while de-emphasizing the irrelevant words. Finally, the weighted v values are summed up to obtain 
the corresponding feature vector, which is described as:

Attention Q K V softmax
Score q k

d
v

k

, ,
,

( ) = ( )










 (3)

Therefore, the multiple attention mechanism can be expressed as

MultiHead SV head head W
h

O( ) = ( )Concat
1
,  (4)

Figure 3. Input combinations for BERT
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After the multi-head self-attention layer, to further refine the feature representation of the input 
sequence, the feature information at each position is passed through the “feedforward neural network 
layer.” The “feedforward neural network” consists of two fully connected layers and a ReLU activation 
function, and it can be described using the following formula:

FFN ReLux W Wx b b( ) = +( )+2 1 1 2
 (6)

where W
1

 and W
2
 are parameter matrix of the fully connected layer. b

1
 and b

2
 are bias vectors.

METHOdS

This chapter proposes a multi-view image-text matching method based on the Transformer architecture, 
where the Transformer inference network maps images and text to a common space and obtains 
compact vectors for both image and text. This inference network not only captures rich information 
from images and text but also avoids redundant calculations of local similarities between image 
regions and text words, effectively reducing the computational load of the model. Subsequently, to 
explore text descriptions from different perspectives, this approach designs a multi-view matching 
module. It uses dilated convolutions to model image information from different viewpoints, thereby 
calculating image-text similarity more accurately.

Image Feature Extraction
As described in Section 2.1, this paper adopts Faster-RCNN for image feature extraction. During 
the training phase, we employed several strategies to continuously enhance the performance of the 
Faster-RCNN model. Firstly, we conducted pretraining of the model using the benchmark dataset 
ImageNet. This step helps the model learn rich visual features. Subsequently, to further enrich the 
model’s knowledge, we performed additional training using the Visual Genome dataset, which 

Figure 4. Transformer self-attention mechanism architecture diagram
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contains images along with corresponding textual descriptions. This dataset assists the model in better 
adapting to the image-text matching task, enabling it to understand semantic information in images.

Furthermore, to enhance the model’s representational capacity, we employed a “bottom-up” 
approach. In the model’s output, we added an additional output for predicting attribute classes. For 
instance, when identifying an object like “car” in “red car,” the model not only predicts the object 
class but also predicts attribute classes like “red.” This strategy helps the model more accurately 
associate salient regions with textual words, improving the model’s correlation between images and 
text, and consequently, its performance in image-text matching tasks.

Finally, after extracting image region features using Faster-RCNN, we apply a fully connected 
layer to transform the feature dimension of image regions into 2048 dimensions. Hence, the feature 
of the selected picture can be expressed as I I I I

n
= …{ }1 2

, , , , where n  denotes the number of image 
areas. 

Text Feature Extraction
In this chapter’s approach, we adopted the BERT model introduced in Section 2.3 for extracting 
context-enhanced word embeddings. BERT is a model that has been pre-trained on various natural 
language processing tasks, including sentence prediction and sentence classification. Unlike traditional 
Word2Vec and Glove models, BERT captures contextual information around each word in a more 
effective manner.

This effective capture of contextual information allows the model to generate different feature 
representations for sentences based on their semantic differences. For example, consider the word 
“bank.” When it appears in a context related to “river,” its embedding representation will contain 
semantic information about bodies of water and natural landscapes. However, when it appears in a 
context related to “finance,” its embedding representation may contain semantics related to the 
financial and economic domain. This flexibility in capturing the meaning of words in different contexts 
makes BERT a powerful tool for processing textual data, enabling a better understanding and 

Figure 5. The model diagram of the proposed multi-view image text matching method
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expression of complex semantic information in text. The final obtained text feature vector can be 
represented as T t t t

m
= …{ }1 2

, , , ,  where m indicates the number of words in the text.

Position Coding
Since the Faster-RCNN model only extracts image features and does not include any spatial information 
about image regions, the visual reasoning module would be unable to reason about spatial relationships. 
This is disadvantageous for tasks involving multiple text descriptions and multi-view matching, as 
many text descriptions contain spatial information, such as “top” or “bottom.” To introduce spatial 
information into the visual reasoning module, this approach uses the coordinates of the image region 
bounding boxes to construct position encodings.

In the Faster-RCNN model, the coordinates of each region bounding box are typically represented 
as p x y x y= ( )1 1 2 2

, , , , with x y
1 1
,  being the coordinates of the upper left corner of the image region, 

and x y
2 2
, are the coordinates of the lower right corner of the image region. Subsequently, we calculate 

the absolute positions of the region coordinates and normalize both the region coordinates and the 
region area using the following formula:

P =
−( ) −( )











x

W

y

W

x

H

y

H

x x y y

WH
1 1 2 2 2 1 2 1, , , ,  (7)

where W denotes the width of the whole image and H denotes the height of the whole image.
Finally, the image feature vector I and the position encoding vector P are concatenated, and then 

passed through two fully connected layers with ReLU activation functions to obtain the final image 
feature with spatial information I

I W W I P b b= ⊕( )+( )+2 1 1 2
ReLu  (8)

where W
1

 and W
2
 are the fully connected layer parameter matrix. The symbol Å  denotes a 

splice operation.

Transformer Inference Networks
The image inference and text inference in this chapter are both based on the Transformer architecture. 
Specifically, the input to the inference model consists of a set of image region feature vectors 
I r r r

n
= …{ }1 2

, , ,  and a set of text word feature vectors T t t t
m

= …{ }1 2
, , ,  after position encoding. 

For the image branch, the inference network uses 4 stacked Transformer architectures for image 
inference. For the text branch, since the BERT pretrained model is composed of the Transformer 
architecture, we choose an appropriately sized BERT pretrained model and fine-tune it. No additional 
Transformer layers are added during the inference stage for the text branch. Finally, a final layer of 
the Transformer architecture is added to both the image branch and the text branch, and the weights 
are shared between these branches in the final layer. 

Based on the self-attention mechanism introduced in Section 2.4, the multi-head self-attention 
mechanism does not consider the order of input sequences. Therefore, it can be applied to unordered 
image region features. Specifically, given a set of image region features I r r r

n
= …{ }1 2

, , , , the output 
after the multi-head self-attention layer is represented as O o o o

n
= …{ }1 2

, , , , which is expressed as 
follows
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O LayerNorm= ( )( )+( )MultiHead I I  (9)

Subsequently, O o o o
n

= …
1 2
, , ,  is passed through the feedforward neural network layer in the 

Transformer model, resulting in an output represented as I r r r* * *
n
*= …{ }1 2

, , , , where the calculation 

of r
i
*  is as follows:

r FFN o o
i
*

i i
= ( )+( )LayerNorm  (10)

The text inference process for a single-layer Transformer architecture is similar to the process 
described above. Specifically, given a set of text word features T t t t

m
= …{ , , , }

1 2
, after passing 

through the multi-head self-attention layer and feedforward neural network layer within the 
Transformer model, the resulting text features are represented as T t t t* * *

m
*= …{ }1 2

, , , .
To obtain a compact vector representation of the text features, the average pooling operation is 

applied to the text word features T t t t* * *
m
*= …{ }1 2

, , ,  to obtain the final text global vector 

T
m

t
Global i

m

i
*=

=∑
1

1
 (11)

where T R
Global

l d∈ × . Using this compact global vector for similarity measurement can effectively 
reduce the computational complexity of the model. Additionally, due to the modeling by multiple 
layers of Transformers, this compact vector contains rich semantic information.

Multi-View Matching
To focus on the entire image from different perspectives, this method utilizes dilated convolution to 
model the importance of image information under different perspectives. Dilated convolution is part 
of the Dense Prediction Models. It can not only predict what certain entities are in the image but also 
precisely locate the positions and contours of these entities and determine which pixels they belong 
to. The specific roles of dilated convolution can be summarized as follows:

(1)  Expanding the receptive field: Traditional down sampling methods expand the receptive field 
while reducing the image’s resolution. Dilated convolution expands the receptive field without 
losing image resolution. The expanded receptive field allows the model to detect larger objects, 
while maintaining resolution enables precise localization.

(2)  Aggregating multiscale contextual information: The key parameter of dilated convolution is 
the dilation rate of the convolution kernel. Based on different dilation rates, dilated convolution 
can aggregate information from different-sized regions of the image, which is crucial in multi-
perspective tasks.

For the task in this chapter, after obtaining the image features I r r r* * *
n
*= …{ }1 2

, , ,  from the 
Transformer inference network, this method uses dilated convolutions of various sizes and dilation 
rates to explore multi-perspective information in the image. The specific process is as follows: As 
the dilation rate increases, the convolutional kernel’s receptive field expands without losing 
resolution. For example, for a standard 3×3 convolutional kernel, increasing the dilation rate from 
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1 to 2 increases its receptive field from 3 to 5. The formula to calculate the receptive field of a 
dilated convolution is as follows: RF k k * d= + −( ) −( )1 1 , where RF (Receptive Field) represents 
the receptive field size, k is the original convolution kernel size, and d is the dilation rate coefficient. 
This method uses 9 dilated convolutions with different parameters to model image features 
I r r r* * *

n
*= …{ }1 2

, , , , and concatenates the final outputs. For an image region r
i
* , the output after 

dilated convolution is given by

F r f f f n
i i

*= ( ) = …( ) ∈ ( )Dilated concat i
1 2 9

1, , , , ,  (12)

F = …{ }F F F
n1 2

, , ,  (13)

where Dilated ·( )  denotes the null convolution operation and f
i
 denotes the output of the ith 

convolutional kernel. F  denotes the whole image with all significant regions of the whole image 
after hollow convolution. The parameters of the nine null convolution kernels are shown in Table 1.

Next, we added a fully connected layer and applied softmax normalization function to the feature 
vector F F F F

n
= …{ }1 2

, , , , resulting in a multi-perspective matrix F F F F R* * *
n
* n M= …{ } ∈ ×

1 2
, , , , 

where n represents the number of image regions, and M represents the number of perspectives.
Finally, the image feature vector I r r r R* * *

n
* n M= …{ } ∈ ×

1 2
, , ,  is multiplied with the multi-

perspective matrix F F F F R* * *
n
* n M= …{ } ∈ ×

1 2
, , ,  to obtain the multi-view image feature I

view
:

I F I
view

*
T
*= ( )  (14)

where I c c c R
view M

M d= …{ } ∈ ×
1 2
, , , , M denotes the number of viewpoints and d denotes the 

image feature dimension.

Loss Function

To obtain multi-view matching, this method uses the multi-view image feature vector I R
view

M d∈ ×  
and the text global vector T R

Global
dÎ  to construct a multi-view similarity vector A. The specific 

construction method is as follows: calculate the cosine similarity between the image features c
i
 from 

all perspectives and the text global vector T
Global

, the calculation process is as follows:

A
c T

c Ti
i
T
Global

i Global

= = …, , , ,i M1 2  (15)

Table 1. The settings of null convolution parameter

Num 1 2 3 4 5 6 7 8 9

k 1´1 3 3´ 3 3´ 3 3´ 3 3´ 5 5´ 5 5´ 5 5´ 5 5´

d 1 1 2 3 4 2 3 4 6

RF 1´1 3 3´ 5 5´ 7 7´ 9 9´ 9 9´ 13 13´ 17 17´ 25 25´
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where the multi-view similarity vector A RMÎ  contains similarity scores for M different 
perspectives. Subsequently, the similarity scores between the entire image and the text are obtained 
by applying max-pooling operation to the similarity vector A, resulting in the final image-text similarity 
score. The final image-text similarity score is given by

S MaxPooling i MI T A, , , , ,( ) = ( ) = …1 2  (16)

After obtaining the similarity scores, this approach utilizes the “Hardest Triplet Loss” function 
to strengthen the alignment between images and text. “Hardest Triplet Loss” prioritizes the most 
challenging data triplets, enabling the model to learn more accurate and discriminative feature 
representations faster. This enhances performance in similarity tasks and increases resilience to data 
noise, making it particularly well-suited for tasks like face recognition, image retrieval, and similarity-
based recommendations. Unlike the “Triplet Loss” function, the “Hardest Triplet Loss” function 
focuses exclusively on the hardest negative samples within a small batch training set, assigning all 
gradients to the hardest negative sample rather than distributing gradients evenly among all negative 
samples. When dealing with a large number of easy negative samples dominating the loss function, the 
“Hardest Triplet Loss” function is less likely to get stuck in local minima, making it more beneficial 
for the image-text matching task. It can be formulated as

Loss I T S I T S I T S I T S I T, max , , , max , , ,ˆ ˆ( ) = − ( )+ ( )




+ − ( )+ (0 0± ± ))




 (17)

Where ±  is the margin distance parameter, S ·,·( )  is the formula for calculating similarity scores, 

S I T,( )  represents the similarity score for correct matching image-text pairs, and S I T, ˆ( )  and S I T,̂( )  
denote the similarity scores for the hardest negative samples from image to text and from text to 
image, respectively. In experiments, only the hardest negative sample from each mini-batch is used, 
instead of aggregating all negative samples.

EXPERIMENT RESULTS ANd ANALySIS

dataset
This paper conducted experiments using two benchmark datasets in the field of image-text matching, 
namely the MS-COCO dataset and the Flickr30K dataset.

MS-COCO dataset, released by Microsoft Research, is widely used in computer vision tasks, 
including object detection, semantic segmentation, image captioning, and more. It comprises 123,287 
images, each with 5 corresponding textual descriptions. The dataset contains three types of images: 
standard object images, standard scene images, and non-standard images. In this study, the MS-COCO 
dataset was split in the manner proposed by Andrej Karpathy, with 113,287 images used for training, 
5,000 for validation, and 5,000 for testing. During testing, two modes were employed: 1K and 5K 
testing. In the 1K testing, the test set was divided into 5 equal parts, and 5-fold cross-validation was 
performed, with the average results considered as the final accuracy. In the 5K testing, all 5,000 test 
images were used directly for testing.

The Flickr30K dataset consists of 31,000 images, similar to MS-COCO, with each image having 
5 textual descriptions. Unlike MS-COCO, Flickr30K does not categorize images into types. The 
images in the dataset represent everyday scenes, and their corresponding textual descriptions vary 
with distinct emphases. This dataset is known for its large volume, rich content, and broad coverage, 
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making it a primary dataset in the field of image-text matching. For this study, 29,000 images were 
used for training, 1,000 for validation, and the remaining 1,000 for testing.

Experimental Setting
This approach conducted experiments and testing on the MS-COCO 1K dataset and the Flickr30K 
dataset, using R@1, R@5, and R@10 as evaluation metrics to assess the model.

For the feature extraction stage, the image branch utilized Faster-RCNN to extract n=36 salient 
regions and applied a fully connected layer to make the dimension of each salient region feature 
d=2048. The text branch used a pre-trained BERT model, consisting of 12 self-attention layers, each 
with 12 heads and 768 hidden units. During the training phase, the parameters of the pre-trained 
BERT model were kept fixed.

In the inference network stage, the visual branch utilized 4 stacked Transformer layers. Since the 
text branch already embedded the Transformer architecture in the BERT model, only the Transformer 
layer parameters within the BERT model were fine-tuned, without adding extra Transformer layers. 
In the final two Transformer architectures, both image and text features were mapped to a common 
space of 1024 dimensions.

For the multi-view matching stage, the number of views (M) was set to 10, and the edge parameter 
±  in formula (17) was set to 0.2. The approach used the Adam optimizer for training for 30 epochs, 
with a minimum batch size of 128. The learning rate was set to 0.0001 for the first 20 epochs and 
then lowered to 0.00001 for the remaining 10 epochs.

Experimental Results
In this experiment, we compared our method with several common algorithms, denoted as VSE++ 
(Fartash et al., 2018), SCAN (Lee et al., 2018), CAMP (Lee et al., 2018), SAEM (Wu et al., 2019), 
RDAN (Hu et al., 2019), VSRN (Li et al., 2019), IMRAM (Chen et al., 2020), MMCA (Wei et al., 
2020), GSMN (Liu et al., 2020), GAMERA (Qu et al., 2020), MIRPF (Jie et al., 2023), and the 

Algorithm Transformer model

Input: Image feature vector I I I I
n

= …{ }1 2
, , ,  and text feature vector T t t t

m
= …{ }1 2

, , ,

Output: Accuracy

1: Obtain image features with spatial information according to Equation (8)

2: Repeat:

3:
New image features I r r r* * *

n
*= …{ }1 2

, , , and new text features T t t t* * *
m
*= …{ }1 2

, , , are obtained by 
Transformer according to Equation (9)-(11)

4: Obtain a multi-view matrix F F F F* * *
n
*= …{ }1 2

, , ,  according Equation (12)-(13)

5: Obtain multi-view image features I c c c
view M
= …{ }1 2

, , ,  according Equation (14)

6: Using the hardest ternary loss function to calculate the loss value according to Equation (17)

7: Update the weight matrix in transformer

8: until the maximum iteration reached

9: Return the accuracy
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proposed scheme (TMIM). Furthermore, we conducted matching from image to text and from text 
to image separately. The experimental results are presented in Figures 6 and 7, respectively.

In Figures 6 and 7, our approach showcased impressive performance on the MS-COCO 1K 
dataset, nearly reaching the state-of-the-art benchmarks. When compared to the current state-of-
the-art CAMERA model, our method displayed substantial improvements, boasting a 3.8% increase 
in R@1 accuracy for image-to-text matching and a 0.8% enhancement in text-to-image matching. 
These results underscore the superiority of our stacked Transformer architecture and the efficacy of 
our multi-view matching strategy.

Moreover, we evaluated the computational efficiency of our approach on the MS-COCO 
dataset using a single GPU. For image-to-text matching, our method requires a mere 0.2 seconds 
to compute and rank the similarity scores for the top 5000 text descriptions when given an image. 
Similarly, for text-to-image matching, it takes only 0.06 seconds to perform the same task when 
provided with a text description. In contrast, the SCAN model, which utilizes a cross-modal 
attention mechanism, takes substantially longer at 3.8 seconds and 1.5 seconds for these respective 
tasks. This demonstrates the remarkable efficiency of our method, rendering it suitable for mobile 
applications and large-scale datasets.

Turning our attention to Figures 8 and 9, our method delivered strong results on the 
Flickr30K dataset. In comparison to the suboptimal GSMN model, our approach improved the 
R@1 accuracy by 0.5% for image-to-text matching and an impressive 1.2% for text-to-image 
matching. Furthermore, our method significantly closed the performance gap when compared 
to the state-of-the-art MIRPF model.

Figure 6. Experimental results of image-to-text on MS-COCO 1K dataset
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To explore the impact of different modules on the image-text matching results, we conducted 
ablation experiments on both the Image-Text Matching Module and the Prior Knowledge Graph 
Module.

First, ablation experiments for the Image-Text Matching Module (A):

(1)  No att: This involves removing the Transformer self-attention mechanism and replacing it with 
fully connected layers and average pooling to obtain a global image feature vector.

(2)  No 1D-CNN: This experiment removes the 1D-CNN component and uses fully connected layers 
and average pooling to obtain a global text feature vector.

(3)  Text LSTM: In this experiment, the BERT pretrained model is replaced with a LSTM model.
(4)  Text Bi-GRU: Similarly, the BERT pretrained model is replaced with a Bidirectional Gated 

Recurrent Unit (Bi-GRU).

Ablation experiments for the Prior Knowledge Graph Module (B):
Second, ablation experiments for a priori knowledge graph modules include:

(1)  No GCN: This experiment removes the Graph Convolutional Network (GCN) module, using only 
feature vectors derived from glove embeddings as prior knowledge and omitting the learning of 
relationships within the prior knowledge.

(2)  No Wtag: In this case, the use of word labels to guide text feature representation is removed.

Figure 7. Experimental results of text-to-image on MS-COCO 1K dataset
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(3)  No »
2

: This experiment removes the entire Prior Knowledge Graph Module, relying solely on 
global image and text feature vectors for similarity measurement.

These ablation experiments were performed to analyze how each module contributes to the 
image-text matching performance.

From Table 2, we can observe the following:

(1)  No att: Removing the self-attention mechanism significantly decreases the model’s accuracy, indicating 
that self-attention is effective in aggregating complex relationships between image regions.

(2)  No 1D-CNN: Eliminating the 1D-CNN results in a substantial drop in model performance. This is 
because text feature representation not only affects the text branch but also influences the training 
of the Transformer in the image branch. Therefore, good text feature representation is crucial.

(3)  Text LSTM: The use of LSTM’s may result in inadequate feature extraction of the text and a 
reduction in the final accuracy.

(4)  Text Bi-GRU: Using Text Bi-GRU causes a slight decrease in model accuracy, suggesting that 
the new text pretraining method, BERT, has a beneficial effect on the model.

(5)  No GCN: Removing the GCN module leads to a relatively small decrease in model performance, 
indicating that GCN indeed learns dependencies between prior knowledge. Additionally, using 
only the glove technique also improves model performance, showing that prior knowledge can 
provide valuable information.

Figure 8. Experimental results of image-to-text on Flickr30K dataset
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(6)  No Wtag: The absence of word tags results in a significant decrease in model accuracy. This is 
because prior knowledge mined from the text corpus, along with word tags, enhances text feature 
representation, which contributes to higher model accuracy.

Figure 9. Experimental results of text-to-image on Flickr30K dataset

Table 2. Results of ablation experiments

Model
Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10

No att 71.4 90.7 94.9 52.1 80.3 87.6

No 1D-CNN 72.2 90.2 94.3 53.4 79.3 87.8

Text LSTM 73.1 90.5 94.7 54.3 81.2 88.3

Text Bi-GRU 74.8 91.0 95.8 56.9 83.2 89.0

No GCN 73.2 90.9 95.2 55.6 83.0 88.6

No Wtag 71.1 91.2 96.4 50.2 80.5 88.2

No »
2

70.4 89.5 94.7 47.7 79.2 89.8

TMIM 77.5 93.7 96.8 59.8 85.3 91.2
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(7)  No 2: Removing the prior knowledge graph module leads to a substantial decrease in model 
performance, underscoring the effectiveness and necessity of the prior knowledge graph module.

These ablation experiments highlight the importance of various components in the model and 
how they contribute to its overall performance.

Based on the analysis above, in the approach proposed in this paper, Faster-RCNN demonstrates 
stronger contour recognition capabilities, while the BERT language model excels at extracting 
textual contextual features. Finally, the utilization of the Transformer framework enables outstanding 
performance in inference tasks.

CONCLUSION

This paper introduces an image-text matching method based on prior knowledge graphs. It comprises 
three main modules: the prior knowledge graph module, the image-text matching module, and the 
integration module. The prior knowledge graph module and the image-text matching module are 
connected to the integration module. In the prior knowledge graph module, external prior knowledge 
graphs are used to guide image-text matching. Graph convolution is employed to establish relationships 
between prior knowledge, significantly enhancing the model’s understanding of real-world scenes, 
reducing computational complexity and parameters, and improving inference speed. In the image-text 
matching module, the proposed method utilizes Transformer self-attention mechanisms to aggregate 
relationships between image regions. It also employs the pre-trained BERT model to extract text 
feature vectors and employs 1D convolution to capture phrase-level information, effectively improving 
model accuracy. Additionally, to reduce feature disparities between image and text modalities for 
better similarity measurement, the method introduces relative entropy in the loss function. Finally, 
extensive experiments are conducted to validate the substantial contributions of each module. In the 
future, research will concentrate on exploring novel fusion mechanisms to further improve text-image 
matching and enhance the accuracy of cross-modal matching.
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