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ABSTRACT

This study employs a novel Markov jump system model to address complexities and uncertainties 
in modern logistics management, particularly in supply chain logistics information networks. It 
introduces dynamic memory to tackle issues in traditional static networks, enabling modeling and 
control of this intricate system. By assessing decision node importance, a novel strategy optimization 
method is devised. Through information exchange and decision adjustments among cooperating 
nodes, the overall decision system performance is enhanced, resulting in a comprehensive logistics 
information coordination mechanism for production supply chains based on the Markov jump system. 
The research demonstrates that this approach considers node interactions and information exchange, 
using dynamic memory to improve system adaptability and robustness, ultimately enhancing 
overall decision performance and stability. This has practical value for decision support and system 
optimization in production supply chain logistics information networks, offering fresh insights into 
Markov jump system control.
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In the era of globalization and informatization, efficient collaboration of production and supply 
chain logistics has become an important guarantee for the competitiveness of enterprises (Guo et 
al., 2020). However, due to the complex connections and information asymmetry between various 
links in the supply chain, the difficulty of information collaboration increases, which in turn affects 
the operational efficiency and flexibility of the entire supply chain (Wang et al., 2022). To address 
this challenge, researchers have focused extensively on various logistics information collaboration 
mechanisms (Qin et al., 2021). This article focuses on a production supply chain logistics information 
collaboration mechanism based on Markov jump systems, aiming to use the theoretical model of 
Markov jump systems to explore their potential and advantages in improving the efficiency of supply 
chain logistics information collaboration.
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Although the use of Markov jump systems in the collaboration of production and supply chain 
logistics information is a popular research topic (Meng et al., 2022), this method relies on the estimation 
of historical data and state transition probabilities for modeling the system state, which may be affected 
by incomplete or inaccurate information, leading to challenges in the accuracy of the model (Gao 
et al., 2022). In addition, for complex supply chain network structures and dynamic environments, 
there are also problems such as difficulty in fully capturing the complexity and variability of the 
actual supply chain, as well as insufficient recognition and collaborative consideration of important 
decision-making nodes (Tang et al., 2023). In this regard, the aim of this study is to develop a new 
controllable Markov jump system by introducing the concept of dynamic memory, in order to improve 
the accuracy and efficiency of decision-making. This study constructs an effective decision-making 
node identification and collaborative mechanism to enhance the understanding and recognition of 
the importance of decision-making nodes in the supply chain logistics information network, more 
accurately grasp the key factors in the decision-making process, and optimize the selection and 
coordination of decision-making strategies to capture the influence of historical information and 
state transitions, thereby enhancing the decision-making ability of the model. The framework of this 
study is shown in Figure 1.

This study makes contributions to the literature in the following areas:

1. 	 Using Markov jump systems to model the production supply chain and abstracting and describing 
the state transition process of each link in the supply chain, thereby providing a foundation for 
the subsequent design of collaborative mechanisms.

2. 	 Introducing a Markov feedback system based on dynamic memory, fully considering the dynamic 
evolution of the system state, thus better adapting to the actual supply chain environment.

3. 	 Utilizing the collaborative mechanism of this study to effectively improve the overall efficiency 
of the production supply chain, reduce the delay and cost of information transmission, improve 
the response speed and flexibility of the production supply chain, and thereby enhance the 
competitiveness of enterprises.

4. 	 Combining the characteristics of Markov models and the demand for supply chain logistics 
information collaboration. The research results can provide support for production supply chain 

Figure 1. Research Framework
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management decisions and provide a new approach and method to solve the problem of supply 
chain logistics information collaboration.

Literature Review

In previous research, certain results were achieved in optimizing the logistics information collaboration 
mechanism of the production supply chain for enterprises to improve operational efficiency and 
reduce costs. For example, Mahdiraji et al. (2022) proposed an information sharing model based 
on Bayesian rules to address the information barriers faced by traditional supply chain management 
and designed an information sharing strategy to improve the efficiency and accuracy of information 
transmission between nodes in the supply chain. Hammad et al. (2023) proposed a production supply 
chain logistics information collaboration mechanism based on spatiotemporal flow and information 
sharing and verified the effectiveness of this mechanism through empirical cases. Wu et al. (2023) 
studied a production supply chain logistics information collaborative decision-making model based 
on intelligent optimization algorithms and applied it to practical cases to prove the effectiveness of 
the model in improving collaborative efficiency and reducing costs. Some scholars have also studied 
key issues in logistics management by constructing a production supply chain logistics information 
collaboration platform and proposed information sharing and security management methods based 
on blockchain technology (Liu et al., 2020).

In recent years, with the rapid development of the economy and society, many scholars have begun 
to apply Markov jump systems to logistics collaboration mechanisms. Jackson et al. (2023) found in 
their research that traditional logistics collaboration mechanisms often suffer from information lag 
and high costs, and Markov jump systems can effectively solve these problems. They designed a new 
logistics collaboration mechanism based on Markov jump systems and verified its effectiveness and 
feasibility through numerical simulations (2023). Sharma et al. (2023) proposed a decision control 
strategy based on state transition matrix by analyzing Markov jump systems and applied it to complex 
supply chain management. Experiments have shown that this method can significantly improve 
efficiency and stability in the supply chain. Wang et al. (2022) studied the optimization method of 
decision control strategy for Markov jump systems. By dynamically adjusting decision parameters, 
they achieved the optimization of process control and resource allocation in the production supply 
chain, improving production efficiency and supply chain flexibility (2022).

However, despite various measures being taken in the production supply chain, the collaborative 
efficiency and accuracy of logistics information still face significant challenges. This is mainly 
because each link in the production supply chain is full of uncertainty, complexity, and dynamic 
changes, which leads to an increase in the error of the model results. In the entire supply chain 
logistics information network, decision nodes are considered key points with significant influence 
in the system. To address this issue, this paper adopts a method based on Markov jump systems and 
introduces a dynamic memory mechanism to optimize the control strategy of decision nodes. By 
analyzing and modeling the dynamic memory of nodes, we can identify key factors that affect their 
importance and develop corresponding decision control strategies based on these factors. This will 
help optimize the node importance coordination mechanism in the supply chain logistics information 
network, thereby reducing uncertainty and risk in the system, and improving the efficiency and 
stability of the entire network.

Markov Jump System for Production Supply Chain

Markov Feedback Control Based on Dynamic Memory
Markov jump systems are mathematical models that describe the evolution of stochastic processes, 
characterized by the randomness of transitions between states (Gao et al., 2022). In other words, their 
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state is not fixed, but rather, it jumps and changes between different modes. This jump reflects the 
complex state transition process in the production supply chain, as shown in Figure 2. Information 
collaboration is crucial in the production supply chain. This study introduces Markov feedback control 
with dynamic memory, which can achieve dynamic regulation and optimization of information flow 
by comprehensively considering historical states (Sathyan et al., 2023). Specifically, it can predict 
potential state transitions in the future based on the past state and behavior of the system and take 
corresponding measures to adjust various links in the supply chain to maximize demand, improve 
efficiency, and reduce costs (Liang et al., 2019). Therefore, Markov feedback control based on dynamic 
memory provides a flexible and effective control strategy for the collaborative mechanism of logistics 
information in the production supply chain, which can better adapt to the complex and changing supply 
chain environment and improve the stability and resilience of the supply chain (Chen et al., 2022).

A class of continuous time Markov jump systems is considered in Equation 1.
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In Equation 1, 𝑥(𝑡), 𝑢(𝑡), and 𝑦(𝑡) represent the system state, control input, and measurement 
output, respectively. 𝜔(𝑡) represents external disturbances, {𝑟(𝑡), 𝑡>0} represents non-homogeneous 
Markov processes, Ar(t), Br(t), Cr(t), Dr(t) are known matrices.

By using a dynamic variable, more transmission resources can be saved (Zhao et al., 2021). The 
triggering conditions are shown in Equation 2.
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Figure 2. Markov Jump System
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In Equation 2, tk is the first transfer time; ℎ, 𝑘ℎ, tkh and h represent the sampling period, sampling 
time, and the latest triggering time, respectively. {𝑡𝑘ℎ, 𝑘∈ N+} ⊆ {𝑘ℎ, ℎ  ∈ N+}.  𝜆>0 is a given 
parameter.

Meanwhile, to better describe non-homogeneous Markov processes, the following definitions 
are given: 𝑡l represents the l-th transition time and Rl represents the Markov process, where the dwell 
time is Tl=𝑡l-𝑡l-1. The transition probability under the Markov chain Rl is shown in Equation 3.

Pr{ | }
,
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q i j

i jl l
ij

+ = = =
≠
=
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
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	 (3)

In Equation 3, i and j represent subsystem modes and {(Rl, 𝑡l), l ∈   N} is a non-homogeneous 
Markov update process. Based on this description, when the system mode i is activated, Gi(·) represents 
the probability distribution function calculated as shown in Equation 4.

G h T h r t i
i l l
( ) Pr ( )= < ={ }+1 	 (4)

In Equation 4, let 𝑁(𝑡)=sup {l: 𝑡l ≤ 𝑡}.  If 𝑟(𝑡)=RN (𝑡), it is called a Markov process {𝑟(𝑡), and 𝑡 ≥ 
0} is associated with the update process {(Rl, 𝑡l)} (Chen et al., 2020).

Modern Multidimensional Logistics Information Collaboration System
Production supply chain logistics information collaboration refers to the use of information sharing 
and coordination methods to promote effective communication and cooperation between various 
links in the supply chain (Khoukhi et al., 2019). In modern logistics, multi-dimensional logistics 
information collaboration is crucial, which is reflected in the application of Internet of Things (IoT) 
technology. Lack of information collaboration will lead to the failure of other forms of collaboration 
(Jamrus et al., 2020). Therefore, the accuracy and timeliness of logistics information are crucial for 
the efficient operation of logistics systems. The modern logistics collaboration system aims to solve 
the problems of disharmony and information barriers between various logistics subsystems, thereby 

Figure 3. Modern Multidimensional Logistics Information Collaboration System
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achieving efficient transmission and sharing of information (Liu et al., 2021). Figure 3 shows the 
modern multi-dimensional logistics information collaboration system.

The modern multi-dimensional logistics information collaboration system aims to promote 
information sharing and smooth transmission among intelligent management departments within the 
enterprise, to ensure consistency in information collaboration (Liu et al., 2021). This system enables 
various management departments to update and share real-time information on procurement, supply, 
orders, finance, and transportation costs, thereby avoiding information duplication and accuracy issues, 
and significantly improving the efficiency of information processing (Gong et al., 2022). Of course, 
the functions of modern multi-dimensional logistics information collaboration systems are not limited 
to internal enterprises but also include information sharing with external partners (Li et al., 2022). By 
communicating and sharing information with upstream and downstream manufacturers, competitors, 
and cooperative allies, enterprises can better understand market demand, supply chain information, 
and the dynamics of competitors, thereby making early adjustments to strategies and maintaining 
market competitiveness (Liu et al., 2021). The benefits of this information sharing are obvious, but 
in order to ensure the collaborative operation of various information systems, it is necessary to use 
technical means such as data collection, transmission, publishing, sharing, and fusion. Through these 
technological means, it is possible to ensure timely and accurate sharing of information among various 
information systems, achieving collaborative operation (Ran et al., 2024).

Importance of Logistics Information Network Decision Nodes
In the logistics information network of the production supply chain, decision nodes refer to the key 
nodes responsible for formulating and executing logistics decisions. Through research based on Markov 
jump systems, the state transition probability and transition rate of each decision node are analyzed 
and its impact on the logistics information network is evaluated, the reliability and stability of decision 
nodes in the network are determined (Rukundo et al., 2022). In other words, logistics decision-making 
in the production and supply chain essentially relies on various data provided by logistics information 
network nodes to make decisions. Therefore, logistics information network decisions can be set as 
a decision information system (DIS), which is usually a binary: DIS=(U, AT) or DIS=(U, C ∪ D). 
Among them, C= {α1, α2, ..., αn} represents a set of conditional attributes, D={d} represents a set 
of decision attributes, and U={u1, u2, ..., un} represents a wide area (Gupta et al., 2022). If there 
are m decision objects (or samples), the decision matrix can be obtained, as shown in Equation 5.
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Equation 5 contains the conditions and decision information for each decision. In addition, in 
the Markov jump system, using the jump comprehensive correlation degree to measure the direct 
correlation degree of factors, the importance of decision nodes in the production supply chain logistics 
network is IMPfin (αi, d) and it can be defined as the comprehensive degree of jump correlation between 
the information of each network node and logistics decisions (Yu et al., 2024), as shown in Equation 6.

IMP d
fin i i
( , )α ω=

0
	 (6)

The higher the importance value in the formula, the stronger the correlation between the logistics 
network node information of the production supply chain and logistics decisions, indicating that the 
network node information has a significant impact on logistics decisions.
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Optimization of Production Supply Chain Logistics 
Information Collaboration Mechanism

Decision Control Strategy Optimization for Markov Jump Systems
In production supply chain logistics, the optimization of decision control strategies for Markov jump 
systems plays an important role. By optimizing state recognition prediction and decision-making, 
Markov jump models can improve the operational efficiency and collaboration of the production 
supply chain. In this process, the system’s state can represent different stages or states, such as 
order processing, production, and transportation (Wei et al., 2023). The probability of system jumps 
between different modes directly affects the changes in system state, stability, and performance. The 
transition probability between these modes is usually described by the mode transition rate matrix 
(MTRM), which is closely related to the performance of Markov jump systems (Sathyan et al., 2023). 
By analyzing and optimizing MTRM, we can better understand the transition patterns between 
system states, thereby guiding decision-making and resource allocation. For example, adjusting the 
transition probability can reduce bottleneck links in the system, optimize supply chain processes, 
and improve overall efficiency and collaboration. This study introduces the controllability and mixed 
performance indicators of MTRM and designs an optimal decision control strategy based on MTRM. 
The optimization model is shown in Figure 4.

For the traditional jump linear quadratic Gaussian optimal control with a given MTRM, the 
MTRM is expressed as homogeneous as Π {p

ij
}. The mode transition rate from mode i to mode j in 

a continuous time Markov process often introduces performance metric J(Π) to measure the system 
cost of Markov jump systems, as shown in Equation 7.
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In Equation 7, E represents mathematical expectation, t0 is the starting time, tf is the termination 
time, Q
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Figure 4. Decision Control Strategy Optimization for Markov Jump Systems



Journal of Organizational and End User Computing
Volume 36 • Issue 1

8

∆Π* ) pair to achieve the goal of minimizing the mixed performance index. However, there is a 
potential problem in the process of constructing the optimal control pair mentioned above, which is 
the coupling between the control quantity and the decision quantity (Piao et al., 2022). Equation 8 
shows how to solve this problem by first assuming that the optimal decision ∆Π*  has been introduced 

into MTRM∏, and after introducing the optimal decision, MTRM Õ
*

 can be expressed as:
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Based on the optimal decision MTRM Õ
*

, it is necessary to design a controller and introduce a 
Markov filter to estimate the system state, as shown in Equation 9.
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In Equation 9, (̂ )x t  represents the estimation of the system, and the state estimation error 
y( ) ( ) ( )ˆt x t x t= −  is defined. For this type of Markov filter, we want to minimize the estimation 

error, that is, to minimize E ty ( )
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In Equation 10, r(t)=i, x̂ t
op ( )  is the optimal state estimation value, and G

i
 represents the state 

estimation gain. Based on the above equation, the optimal state estimation error and state estimation 
covariance matrix can be obtained, thereby obtaining the optimal decision control and achieving the 
goal of minimizing mixed performance indicators.

Controllable Information Collaboration Mechanism 
Model Based on Markov Jump Systems
The controllable information collaboration mechanism model based on Markov jump systems is a 
research method used to improve the collaboration of supply chain logistics information. Its core idea 
is to combine the Markov jump system with the information collaboration mechanism to enhance 
the efficiency and controllability of the supply chain logistics system. In this model, the Markov 
jump system is used to describe the state transition and jump process of logistics information, and 
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by designing and optimizing information collaboration mechanisms reasonably, the collaborative 
efficiency and operational controllability of the supply chain can be improved. This model can 
adaptively adjust collaborative strategies and methods according to different logistics needs and 
environmental conditions, to ensure the smooth operation of the supply chain system in different states.

By using a controllable information collaboration mechanism model based on Markov jump 
systems, we can achieve the following optimization effects:

1. 	 Real time optimization: achieving real-time monitoring and adjustment of production and supply 
chain logistics information, making information transmission timelier and more effective, reducing 
information lag and delay, and improving the real-time performance of information collaboration.

2. 	 Adapting to dynamic environments: dynamically evaluating and adjusting the importance of 
decision nodes to cope with the constantly changing supply chain logistics environment.

3. 	 Improving the accuracy of system prediction: accurately modeling and predicting the status of 
various links in the production supply chain, thereby improving the accuracy and reliability of 
information, reducing errors and distortions in information transmission, and improving the 
accuracy of decision-making.

4. 	 Improving resource utilization efficiency: achieving effective management and allocation of 
logistics information in the production supply chain, optimizing resource utilization, avoiding 
waste and idle resources, and improving production efficiency and overall operational efficiency 
of the supply chain.

This model provides a new method to study and optimize the logistics information collaboration 
of the production supply chain, which is of great significance to improve the performance and 
competitiveness of the supply chain. The pseudocode studied is shown in Table 1.

Table 1. Schematic Diagram of Pseudocode Research

1: Input: System state x(t), first transition time k, sampling period, sampling time, latest trigger time h, kh, tkh, 
probability distribution function G, conditional attribute α,Decision attribute d, external disturbance w

2: Markov feedback control with dynamic memory introduced

3: Calculate the triggering condition tk+1h using eq-2

4: for all t= 1 to R do

5:           Gi(h)=Pr{Tl+1<h/r(tl)=i}

6: Let N(t)=sup{l: tl ≤t}

7: Calculate DIS using eq-5

8: for α=1: n

9: IMPfin(αi,d)=w0i

10: if Qi >0,Ri >0

11: xˆ(t0)=E {x(t0)}=x¯0

12:      Obtain the optimal state estimate value

13: else

14:      Unable to obtain optimal decision control

15: end for

16: end for



Journal of Organizational and End User Computing
Volume 36 • Issue 1

10

Collaborative Quality Evaluation Methods
Collaborative quality is essentially a hierarchical and multi-dimensional concept. When conducting 
quality evaluation, the evaluation methods often vary depending on the evaluation objectives and 
objectives. The evaluation of logistics information collaboration quality in enterprise production 
supply chain is mainly based on just in time (JIT) and automation (Wang et al., 2022). The core 
concept of JIT is to produce the required products at the right time and in the right quantity, avoiding 
unnecessary inventory and waste, thereby improving production efficiency and quality and reducing 
costs. Therefore, the quality of logistics information collaboration in the production supply chain can 
be evaluated from the following three aspects.

Quantity
The ratio between the theoretical demand Kj for each material and the actual received quantity qj is 
the material delivery rate θ (Piao et al., 2022), as shown in Equation 11.

q
j j j
K q= / 	 (11)

In an ideal situation, θj=1, θj is actually within a certain control range, and the distribution of 
B values is random. That is to say, when the process is in a controlled state, the product quality 
characteristic values will follow a certain normal distribution N (μ, σ2), so μ+3σ can be used as a 
control interval for θ, where CL, UCL, and LCL represent the mean, upper limit, and lower limit, 
respectively, as shown in Equation 12.
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If θj is within this control range, it means that the actual amount of material received is the 
same as the theoretical material demand, and the collaborative quality is good in terms of quantity. 
However, it also indicates that there are quality issues in collaboration. The confidence probability 
of dynamic collaborative quality evaluation represented by μ+3σ is 99.73%, which can objectively 
evaluate the quality of collaboration.

Time
Both forward and backward delivery can have a negative impact on the supply chain, so the on-time 
delivery rate r

i
 of material xi during a certain time period can evaluate the collaborative quality 

(Wang et al., 2024), as shown in Equation 13.

r
i

j

n

T
N

n
i
j

= =∑ 1 	 (13)

In Equation 13, N
Ti
j >0 represents that the actual arrival time is later than the standard arrival 

time, and N
Ti
j  is a binary expression of T

i
j . In an ideal situation, r

i
=1, like the material delivery 

rate θj, needs to be within a certain control range to be able to evaluate the dynamic collaborative 
quality.
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Comprehensive Evaluation
Information entropy is an important concept of probability distribution in space X = [x1, x2, ..., xi] (Li 
et al., 2022), as shown in Equation 14.

H P P P
i

n

i i( ) = −
=
∑
1

ln 	 (14)

In Equation 14, Pi represents the probability of the i-th element in the vector.
The comprehensive evaluation result LIQj of the j-th indicator is shown in Equation 15.

LIQ
j j j j j
= + −ω θ ω ρ( )1 	 (15)

In Equation 15, wj represents the weight coefficient of the j-th indicator. For a specific LIQj, if it 
is within the control range, this indicates that the collaborative quality is normal and the collaborative 
mechanism is good; however, there is also an abnormality, and appropriate measures need to be taken 
to improve the production logistics coordination quality of the material.

Empirical Research and Analysis

Experimental Data and Preprocessing
Experimental Data
This article takes the production supply chain of three different companies as an example and adopts JIT 
supply strategy to ensure smooth production. To achieve this goal, the company requires all suppliers 
to deliver materials on time. The company has established long-term cooperative relationships with all 
suppliers in the supply chain and requires them to provide fixed types of components. All companies 
have a sound foundation of informatization, with comprehensive coverage of their information systems. 
They can easily obtain the necessary relevant data from these systems to simulate and analyze the 
effectiveness and performance of supply chain logistics information collaboration mechanisms and 
help researchers evaluate and improve related algorithms and strategies. The following are the main 
data on the logistics information collaboration mechanism in the production supply chain:

Order data: information such as quantity, type, destination, and time limit of orders. These data 
can help understand production demand and logistics flow.

1. 	 Transportation data: various parameters recorded during logistics transportation, such as 
transportation time, transportation cost, and transportation path. These data can be used to 
optimize logistics routes and select the best transportation methods.

2. 	 Supplier data: supplier quality, delivery time, price, and other information. These data can be 
used to evaluate the performance of suppliers and select the optimal supply chain partners.

3. 	 Customer demand data: customer demand, time limit, preferences, and other information. These 
data can help enterprises better understand customer needs and adjust production and logistics 
plans in a timely manner.

4. 	 Supply chain network topology data: topology structure of the supply chain network, including 
the connection relationships between suppliers, manufacturers, distributors, and retailers, logistics 
flow, and inventory levels.

5. 	 Jump system data: using Markov jump models for experiments, it is necessary to collect parameter 
data such as jump probability and state transition matrix.
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Data Preprocessing
To better apply production supply chain data to various data analysis, modeling techniques, and model 
optimization, it is necessary to preprocess the experimental data mentioned above to improve data 
quality. The main steps of preprocessing include:

1. 	 Data cleaning: deleting or repairing errors, missing, duplicate, or inconsistent parts of data, 
including filling in missing values, removing outliers, or fixing erroneous data.

2. 	 Data integration: integrating data from different sources into a unified data storage for analysis 
and modeling. This may involve data merging, concatenation, and transformation.

3. 	 Data conversion: transforming data to meet the requirements of analysis or modeling, including 
normalizing, standardizing, discretizing, or converting it to appropriate data types.

4. 	 Feature engineering: creating new features or transforming existing features based on domain 
knowledge and analysis objectives to improve model performance.

5. 	 Data reduction: reducing large datasets to reduce computational load and improve model training 
efficiency, including sampling, aggregating, or compressing data.

Evaluation of Information Collaboration Stability
The instability of the logistics information collaboration mechanism in the production supply chain 
may lead to issues such as information delay and incompleteness. Therefore, to evaluate the stability 
of the production supply chain logistics information collaboration mechanism based on the Markov 
jump system constructed in this article, the calculation method of grey absolute correlation degree 
is adopted for stability evaluation analysis (Li et al., 2022). The grey absolute correlation degree 
between the first group of sample data and other sequences can be obtained. If the grey correlation 
degree is larger, the grey confidence level is higher, and the stability of the detailed production supply 
chain logistics collaboration mechanism is higher. If the system is stable, a data sequence based on 
the difference between the actual time received by the material procurement departments of three 
companies from the production sequence plan and the specified standard time ( IT

i
j ) is established 

and continuously extracted 70 times. For the convenience of display, this article selects one piece of 
the sample data shown in Table 2.

A computer simulation method was used to obtain 7 data sequences that follow the normal 
distribution (See Table 2). Each sequence contains 10 pieces of data, and the data sequence should 

Table 2. Data of Logistics Information Sample

1 2 3 4 5 6 7

-1.03 1.93 -3.28 0.10 -1.33 -4.11 2.04

-2.37 1.18 0.05 -0.35 -2.56 0.02 -0.19

1.38 2.99 -0.01 0.99 1.59 2.19 0.89

1.22 -2.23 0.31 1.58 -4.49 0.13 -0.26

-0.89 1.03 -1.28 -4.21 -1.29 3.19 1.24

1.19 3.35 2.20 0.84 -0.34 -1.45 -0.46

2.43 -0.65 -0.02 -2.04 -3.54 -2.44 -0.66

-0.23 4.62 3.89 1.32 4.84 2.43 1.09

0.09 0.21 -0.46 4.92 -3.11 -1.56 -3.01

-4.52 0.28 2.41 -0.97 -1.00 2.51 -3.40
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follow the normal distribution (assuming its mathematical expectation E and standard deviation are 
0 and 0.1, respectively). The data are sorted to obtain the data sequences Y1~Y7, with Y1 as the 
key point of the network node. The comparison between Y1 and Y2~Y7 sorted data sequences is 
shown in Figure 5.

According to the results presented in Figure 5, it can be preliminarily considered that the system 
has good stability. In general, if the attribute weight based on the generalized grey correlation of two 
data sequences Y1 and Yj is f1j=0.5, the judgment can be made based on the grey confidence level 
P1j: If the grey confidence level is ≥ 90%, the collaborative process of production and supply chain 
logistics information is stable; if the gray confidence level is <90%, the information collaboration 
is unstable and corresponding measures need to be taken to eliminate the disturbance factors caused 
by the collaboration process. The calculation results of grey confidence level are shown in Figure 6.

According to the results in Figure 6, it can be seen that when the attribute weight of the generalized 
grey correlation based on two data sequences Y1 and Yj is f1j=0.5, the grey confidence level results of 
the three datasets in this study all exceed 90%, indicating that the collaborative process of logistics 
information in each production supply chain is stable. Among them, dataset 1, two data sequences Y1 
and Y4, have the highest gray confidence level, reaching 97.88%. The lowest gray confidence level of 
this dataset is also 90.53%. From this, it can be seen that the stability is good and can meet various 
requirements for logistics information in collaboration, thereby ensuring the integrity and accuracy of 
logistics information. This stability can support the establishment of an information sharing platform, 
enhance communication and collaboration efficiency among all parties involved, and facilitate the 
introduction of advanced information technology to enhance information collection and processing 
capabilities. In addition, the grey confidence level of the production supply chain in the other two 

Figure 5. Comparison of Ranking Data Sequences for Y1 and Each Sequence
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datasets is also above 90%, indicating the stability of the collaborative mechanism, which will help 
improve the efficiency and competitiveness of the overall production supply chain logistics.

Collaborative Quality Results and Analysis
Based on the stability evaluation of information collaboration in the previous section, it can be seen 
that the stability of the controllable information collaboration mechanism model based on Markov 
jump system proposed in this study has been well verified. To further evaluate the quality of logistics 
information collaboration in the production supply chain, this study analyzed the quantity, time, and 
comprehensive evaluation aspects, and the results are shown in Figure 7.

First, taking 14 types of materials as examples, the material delivery rate was calculated by 
comparing the demand for enterprise materials with the actual quantity of materials received by the 
manufacturer. In three datasets, material delivery rates θ. The control ranges are (0.84, 1.45), (0.51, 
1.83), and (0.74, 1.42), respectively. To ensure smooth production, a JIT supply strategy was adopted, 
and theoretically, the actual amount of materials received should be equal to the theoretical demand, 
that is θ= 1. However, in actual production supply chains, materials that exceed theoretical demand 
are often provided. Therefore, it is necessary to ensure that θ. If it is greater than or equal to 1, the 
quantity evaluation result (NR) of material information quality can be obtained. Second, the standard 
time and delivery frequency of 14 materials were calculated to obtain the on-time delivery rate of the 
materials ρ,thereby conducting a temporal material information quality evaluation (TR). Finally, we 
conducted a comprehensive evaluation (CR) based on the results of NR and TR. In the figure, CL, 
UCL, and LCL represent the mean, upper limit, and lower limit, respectively.

From the collaborative quality results in Figure 7, it can be seen that the comprehensive evaluation 
results in dataset 1 show that the collaborative quality of logistics information in the production supply 
chain of most materials is good and in a normal and stable state. Among them, there are quality issues 
with materials a8 and a14, and the comprehensive evaluation results are 0.7275 and 1.0946, which 
are close to the lowest control range limit of 0.7264 and the highest control range limit of 1.2322, 
respectively. The production supply chain of material a8 has a more serious quality problem of 
logistics information collaboration in the supply chain, while the problem of material a14 is relatively 
mild. For material supply chains with good quality of logistics information collaboration based on 
Markov jump systems, it is recommended to continue maintaining the current logistics information 
collaboration strategy. For materials a8 and a14 with quality issues, certain measures need to be 
taken to improve the quality of logistics information collaboration in the production supply chain. 
In future production and supply chain logistics cooperation, more attention needs to be paid to the 

Figure 6. Calculation of Grey Confidence Level
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collaborative quality issues of material a8 and material a14. The overall collaborative quality of the 
other two datasets is not an issue, with dataset 2 showing better material performance and fluctuating 
evaluation results between the median values, indicating no collaborative quality issues. Most of the 
materials in dataset 3 also meet the relevant requirements. In summary, the collaborative quality of 
the production supply chain logistics information collaboration mechanism based on Markov jump 
system is good and in a normal and stable state.

To further verify the effectiveness and superiority of the production supply chain logistics 
information collaboration mechanism based on Markov jump system in this study, a comparison 
of control performance was made with improved BP neural network (IBP) (Mahdiraji et al., 2022), 
LMBP feedback neural network algorithm (LMFN) (Jackson et al., 2023), and traditional Markov 
jump system (TMJS) (Sathyan et al., 2023) methods in terms of transmission data volume and 
logistics information triggering rate. The comparison results of the state trajectories, release times, 
and intervals of different methods in dataset 1 are shown in Figure 8.

Figure 7. Collaborative Quality Results Chart
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From Figure 8, it can be seen that the Markov jump system constructed in this study has superior 
control performance, thanks to its dynamic memory Markov feedback system. However, compared to 
IBP, LMFN, and TMJS, the triggering rate is significantly lower. High data transmission volume can 
lead to an increase in communication costs and may cause noise and confusion, thereby increasing 
the complexity of decision-making. Therefore, reducing the balance of data transmission can 
significantly reduce information exchange costs, meet changes in demand in the production supply 
chain, alleviate unnecessary pressure in operations, and improve overall operational collaboration 
efficiency. Compared with LMFN, although the model in this article transmits more data, it can 
stabilize more quickly, in other words, it has better control performance. From this, it can be seen that 
the Markov jump based system proposed in this article can achieve a balance between triggering rate 
and control performance, reduce information exchange costs, simplify decision-making processes, 
and ensure timely and smooth information exchange.

Discussion

In production supply chain logistics, timely and accurate flow of information is crucial for ensuring 
the efficient operation of the supply chain. However, due to the uncertainty, complexity, and dynamic 
changes of each link, information collaboration often faces significant challenges. At this point, Markov 
jump systems can serve as an effective tool for modeling and optimizing decision control strategies. 
This study adopts a Markov feedback system based on dynamic memory to optimize relevant strategies 

Figure 8. System Trajectory and Trigger Time of Dataset 1 Under Different Methods
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in decision making. Because the Markov jump system allows system states to jump between different 
modes, each mode corresponds to a different operating state. Therefore, the process of state transition 
can be quantitatively described by utilizing the transition probability matrix between patterns. In the 
production supply chain logistics information collaboration mechanism, different operating states of 
the supply chain system can be considered as different modes, and corresponding transition probability 
matrices can be established to ultimately obtain a controllable information collaboration mechanism 
model based on Markov jump systems.

In addition, this research model can better establish a balance in triggering rate and control 
performance compared to algorithms such as IBP, LMFN, and TMJS, reduce information exchange 
costs, ensure timely and smooth communication of information, and produce certain effectiveness 
and superiority in decision results. The status of supply chain logistics information was divided into 
different modes and a transition probability matrix was constructed between modes. By monitoring 
and collecting real-time logistics information, the current status was observed and estimated. Based 
on the theory of Markov jump systems, the probability of jumping between different states can be 
described, and this method has great potential in studying information collaboration mechanisms in 
production supply chains. By modeling different states in the supply chain, we can better understand 
the way information is transmitted and shared and optimize the collaboration mechanism by adjusting 
the jump probability to improve the efficiency and adaptability of the supply chain. This will make a 
certain contribution to empirical research related to this type. First, the Markov jump system theory 
is introduced into the research of logistics information collaboration in the production supply chain 
in this study. Compared to traditional continuous system models, Markov jump systems can better 
describe the uncertainty and dynamic changes in the production supply chain. Second, the jump system 
modeling and analysis of the collaborative mechanism of logistics information in the production supply 
chain revealed the existence of nonlinear characteristics. This helps to gain a deeper understanding 
of the complexity of information flow in the production supply chain and provides a theoretical basis 
for developing more effective collaborative strategies. Furthermore, this article proposes a series of 
improvement strategies and algorithms, including dynamically adjusting information sharing strategies 
and flexibly adjusting collaborative nodes to cope with uncertainty and changes in the production 
supply chain. The application of these strategies and algorithms effectively improves the information 
collaboration efficiency of the production supply chain, reduces costs, and enhances the robustness and 
adaptability of the system. Finally, the successful application of this research method in practice will 
bring new ideas and methods to the field of supply chain management. This innovative development 
will promote the progress of supply chain management theory and practice, providing new theories 
and methods for improving the efficiency of production supply chains, reducing costs, enhancing the 
robustness and adaptability of systems.

Conclusion

In today’s globalized and digitized business environment, logistics information collaboration in 
the production supply chain has become an important link for enterprises to improve operational 
efficiency and reduce costs. Based on the theory and method of Markov jump systems, this article 
proposes an innovative decision control strategy optimization model to improve the effectiveness 
of logistics information collaboration in the production supply chain and mitigate the impact of 
various uncertainty factors. This controllable information collaboration model established a Markov 
jump system model, abstracting the states of various nodes in the logistics network as states in the 
Markov chain, and describing the transition probabilities between different states through a transition 
probability matrix. Then, relevant indicators of the collaborative mechanism were introduced to 
evaluate the collaborative efficiency of the logistics network. Next, we improved the collaborative 
efficiency of the logistics network by optimizing control strategies. Finally, corresponding decision 
control strategies were designed for different system states to achieve the optimal path selection of 
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information flow, improve information accuracy and feedback speed, and effectively improve the 
efficiency and accuracy of production and supply chain logistics information collaboration.

Research has shown that using Markov jump systems as the basis for collaborative mechanisms 
can effectively address the instability in the production supply chain. This mechanism can not only 
capture sudden changes in the system state, but also adjust collaborative strategies in real-time to adapt 
to environmental changes. By establishing more flexible and adaptable collaborative mechanisms, 
enterprises can better cope with market fluctuations, production changes, and logistics uncertainties, 
thereby improving the overall efficiency of the supply chain. It can be seen that this study provides 
useful theoretical guidance for the optimization and innovation of logistics information collaboration 
mechanisms in the production supply chain. In future research, we will further optimize this method 
and explore more information collaboration models applicable to the production supply chain, making 
greater contributions to the development of the logistics industry.
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