
DOI: 10.4018/JDM.339915

Journal of Database Management
Volume 35 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

An Efficient NoSQL-Based Storage
Schema for Large-Scale Time Series Data
Ruizhe Ma, University of Massachusetts, Lowell, USA

Weiwei Zhou, Nanjing University of Aeronautics and Astronautics, China

Zongmin Ma, Nanjing University of Aeronautics and Astronautics, China*

 https://orcid.org/0000-0001-7780-6473

ABSTRACT

In IoT (internet of things), most data from the connected devices change with time and have sampling
intervals, which are called time-series data. It is challenging to design a time series storage model
that can write massive time-series data in a short time and can query and analyze the persistent
time-series data for a long time. This paper constructs the RHTSDB (Redis-HBase Time Series
Database) storage model based on Redis and HBase. RHTSDB uses the memory database Redis
(Remote Dictionary Server) to cache massive time-series data, providing efficient data storage and
query functions. HBase is used in RHTSDB for long-term storage of time-series data to realize their
persistence. The paper designs a cold and hot separation mechanism for time-series data, where the
infrequently accessed cold data are stored in HBase, and the frequently accessed and latest data are
stored in Redis. Experiments verify that RHTSDB has apparent advantages over Apache IoTDB and
HBase in data intake and query efficiency.

Keywords
HBase, Query, Redis, Storage, Time-Series Data

INTRODUCTION

With the development of the Internet of Things (IoT) (Eom & Lee, 2017), the amount of time-series
data has shown explosive growth. Time-series data refers to a sequence of data points collected
at fixed time intervals (Lee & Chung, 2014). Each data point is associated with a timestamp that
indicates the generation time of the corresponding data. Typically, the data collected by a sensor in
a particular period can be expressed as a time series [(t1, v1), (t2, v2), ..., (tn, vn)], where vi refers to the
value collected at ti time (Di Martino et al., 2019). Of course, complete time-series data can include
the collection time and collection value as well as the source description information of the current
collection value. For example, we need to include some measurement data information, such as the
names of collection subject and collection index. Comprehensive use cases in the real world have
generated a large amount of measurement data from millions or billions of different sources. Slack

https://orcid.org/0000-0001-7780-6473

Journal of Database Management
Volume 35 • Issue 1

2

collects measurement data from 4 billion unique sources at 12 million samples per second daily, for
example, generating up to 12 TB of compressed data daily. It is essential to manage and process a
large amount of time-series data efficiently. Unfortunately, many off-the-shelf systems cannot scale
to support these workloads, which leads to the random Patchwork and vulnerability of customized
solutions (Solleza, Crotty, Karumuri, Tatbul & Zdonik, 2022). For this reason, diverse time series
databases are proposed to ensure efficient ingestion performance and save storage space as much
as possible. Given that time-series data in applications are generally massive and redundant data
containing source description information in time-series data are enormous, efficient storage and
query of massive time-series data is challenging.

We identify two major categories of time series databases: which are respectively called native
time series databases and common time series databases in this paper. The native time series databases
are the storage systems that are developed especially for time-series data management according to
their structural and usage characteristics, such as InfluxDB1, FluteDB (Li et al., 2018), and Apache
IoTDB (Wang et al., 2020 & 2023). This category of time series databases can efficiently reduce
the overhead of storage space and the query delay. However, for time-series data management and
processing, many other functions and operations are essential in time series databases, such as flexible
aggregation, data retention, multidimensional range query, among others. While the native time series
databases cannot provide full support to time-series data analysis well, mature database systems
are good at dealing with relationships between data and support many unnecessary operations and
guarantees for time series, increasing inefficiency and unnecessary complexity (Shafer, Sambasivan,
Rowe, & Ganger, 2013). The common time series databases are the storage systems that directly
apply the common databases for storing and processing time-series data. Depending on what types
of databases are applied, we further identify two categories of common time series databases. The
first one uses relational databases as the back end of common time series databases (e.g., (Rhea et al.,
2017)). In recent years, NoSQL (Not only SQL) databases have attracted increasing attention from
both academia and industry (Hu & Dessloch, 2015), which offer flexible data representation models
and horizontal hardware scalability so that Big Data can be processed in real time (Bajaj & Bick,
2020). The second category of common time series databases uses NoSQL databases for processing
time-series data (Di Martino et al., 2019).

NoSQL databases contain four major types of database models: key-value stores, column-family
stores, document stores, and graph stores (Grolinger et al., 2013; Van Erven et al., 2019). Different
types of NoSQL databases, say Redis2 (a key-value store), HBase3 (a column-family store), Cassandra4
(a column-family store), MongoDB5 (a document store), Couchbase6 (a document store), OrientDB7
(a graph store), have very different performances (Matallah, Belalem & Bouamrane, 2020). Among
these NoSQL databases, for example, Redis (remote dictionary server) is a high-performance memory-
based NoSQL database, which has excellent data writing performance and supports data persistent
storage and replication of master-slave nodes (Zhou, Lu, Zhang & Qi, 2020); HBase, an open-source,
distributed and versioned NoSQL database, uses Hadoop distributed file system (HDFS) to provide
distributed file storage services, which has the characteristics of high availability, robust scalability
and the ability to store massive data. With one of NoSQL databases as back end, some storage models
for massive time-series data have been developed, for example, ModelarDB+ (Jensen, Pedersen &
Thomsen, 2021) based on Cassandra, NagareDB (Calatrava, Fontal, Cucchietti & Diví-Cuesta, 2021)
built on top of MongoDB, OpenTSDB8 based on HBase, and KairosDB9 based on Cassandra.

Selecting a specific NoSQL database for massive time-series data management is more flexible
and cost-saving, where the performance of the storage model is determined by the performance of the
used database models (Rinaldi et al., 2019). It has been demonstrated that different NoSQL databases
have very different performances (Matallah, Belalem & Bouamrane, 2020). For ingestion of large-
scale time-series data into the target time series database, for example, the storage consumption of
HBase slowly increases along with a significant increase in data size (e.g., a 50% increase in data
size requires about a 20% increase in storage consumption). However, the storage consumption of

Journal of Database Management
Volume 35 • Issue 1

3

Redis rapidly increases along with a significant increase in data size (e.g., a 50% increase in data
size requires about a 200% increase in storage consumption). In addition, the time of data ingestion
in HBase dramatically increases along with a significant increase in data size (a 50% increase in data
size requires a more than 200% increase in data ingestion time), and the time of data ingestion in Redis
does not significantly increase along with a significant increase of data size (e.g., a 50% increase in
data size requires a less than 200% increase in storage consumption). To take full advantage of the
superior performance of different NoSQL databases simultaneously, joint use of multiple NoSQL
databases has emerged for efficient time-series data storage. Cassandra and MongoDB, for example,
are used for discrete time-series data modeling (Ramesh, Sinha & Singh, 2016), where the former has
a sequential data storage mechanism and the latter has a flexible schema and rich query language. In
addition, several in-memory time series databases such as Gorilla (Pelkonen et al., 2015) and Monarch
(Adams et al., 2020) are applied to significantly improve the reading performance of time-series data
by saving all the latest data in memory. In practice, the in-memory time series databases are generally
built atop the common databases (e.g., Gorilla on HBase and Monarch on relational databases). The
idea of jointly using in-memory databases and HBase has been applied in, for example, image data
management (Zhou, Lu, Zhang & Qi, 2020) and financial data (Li, Guo & Guo, 2019), where Redis
acts as data cache model.

Based on Redis and HBase, this paper proposes a storage schema RHTSDB (Redis HBase Time
Series Database) for large-scale time-series data storage. In RHTSDB, to improve the data intake
rate, Redis is used as an in-memory time series database, which can eliminate the cache through data
expiration time and elimination strategies like FIFO (First in First Out), LRU (Least Recently Used),
LFU (least frequently used), etc. Note that although Redis also supports disk persistence of time-
series data, it does not provide a complete storage scheme, and its data intake and query performance
decline significantly when the size of time-series data increases. For this reason, RHTSDB adopts
HBase rather than Redis to store long-term time-series data. HBase, an open-source project, can
customize requirements to a certain extent. In addition, HBase is a distributed storage system that has
good expansion characteristics and low requirements for server performance. Overall, in RHTSDB,
HBase stores infrequently accessed data (called cold data) for solid data scalability, while Redis
stores frequently accessed and the latest time-series data (called hot data) for excellent data intake
performance. To implement the storage schema of RHTSDB, we need to solve two crucial problems:
how to separate hot and cold time-series data and how to transform time-series data between Redis
and HBase. We design a cold and hot time-series data separation mechanism for the first issue and
propose a cache elimination strategy. As to the second issue, we consider both Redis keys and HBase
row keys, designing the HBase and Redis middle key. The row key design of HBase is critical and
is related to data query performance (Li, Guo & Guo, 2019). Continuous row keys and heavy data
operations may lead to a single regional hotspot and even regional server unavailability. In addition,
we supply RHTSDB with some standard functions, supporting time-series data insertion, single value
query, range query, multidimensional query, and time-series data update. We verify our time series
storage schema RHTSDB with experiments and show its advantages over Apache IoTDB and HBase
in data intake and query efficiency.

The rest of this paper is organized as follows. The section on related work mainly discusses the
existing work of time-series data storage models. The Redis-HBase time-series database schema
section proposes our storage schema RHTSDB for large-scale time-series data. The experiment
section evaluates and analyzes the performance of RHTSDB. Conclusion summarizes our work in
this paper and presents the work to be carried out in the future.

RELATED WORK

For massive time-series data analysis and processing, it is essential but challenging to store and query
time-series data efficiently. Time-series data are a special type of data, and an efficient way is to use

Journal of Database Management
Volume 35 • Issue 1

4

native time series databases, which are specially developed for time-series data management according
to the structural and usage characteristics of time-series data. Several native time series databases
have been developed and used. InfluxDB written in the Go language without external dependence,
for example, implements the TSM (Time-Structured Merge) Tree) and optimizes the LSM (Log-
Structured Merge) Tree for time-series data. In InfluxDB, the data points stored in the memory data
structure are collectively written to disk. By absorbing the delta coding scheme proposed by Gorilla
(Pelkonen et al., 2015), InfluxDB can save storage space by obtaining efficient data compression
performance. FluteDB (Li et al., 2018) designs a TTSM (Triggered Time Series Merge) Tree to
optimize key-related operations and physical storage in memory at the expense of some acceptable
data accuracy and consistency. Its storage scheme has strong pertinence and low external dependence.
Byteseries (Shi et al., 2020) effectively solves the problem of data redundancy in massive time-series
data. It divides the memory into active buffer and static buffer, where the active buffer is mainly
responsible for efficient data intake with a dynamic data structure, and the static buffer is mainly used
for data storage. In addition, Byteseries proposes the compressed inverted index algorithm, which
can ensure efficient ingestion and multidimensional query performance. Aiming at high throughput,
low latency, and advanced timing analysis performance indicators of time-series data, Apache IoTDB
(Wang et al., 2020) adopts the LSM Tree mechanism and provides high-performance data reading/
writing and rich query capabilities in the cloud. Apache IoTDB customizes an efficient directory
organization structure for IoT scenarios. In particular, Apache IoTDB can be seamlessly connected
with Apache Hadoop, Spark, Flink, and other extensive data systems. At the edge, Apache IoTDB
provides the capability of lightweight TsFile management. The data on end is written to the local
TsFile, and Apache IoTDB provides specific basic query capabilities. At the same time, Apache IoTDB
supports the synchronization of TsFile data to the cloud. The native time series databases usually
adopt some storage optimization algorithms themselves and make the storage of some time-series
data with superior performance. However, in addition to complex design, long development cycle,
and high cost, they may be problematic in their adaptability aspect: for example, they fail to provide
full support to time-series data management (e.g., flexible aggregation and multidimensional range
query); a native time series database with superior performance in storing some time-series data may
not do well for other time-series data.

Database systems have been widely used in data management of diverse applications, where
various types of data are stored in databases and then processed. Of course, using common databases
in time-series data is beneficial to time-series data analysis (Shafer, Sambasivan, Rowe, & Ganger,
2013). Currently, relational databases are the most widely used mainstream databases and have
been used as a back end to store time-series data (Rhea et al., 2017). Note that traditional relational
databases are incapable of dealing with massive time-series data. Nowadays, NoSQL databases have
been extensively applied for Big Data management and processing in diverse applications, such as
GIS (Guo & Onstein, 2020), cultural heritage (Abdelmoumni & Chenfour, 2022), social network
(Lee, Jeon, & Song, 2020), and healthcare (Sen & Mukherjee, 2023). In particular, some efforts
have been devoted to the use of NoSQL databases in sensor networks and the Internet of Things.
In the Internet of Things scenario for manufacturing, Gamero et al. (2022) developed a decoupled
architecture of SQL and NoSQL database management systems. They demonstrate that MySQL is
favored for higher-order insights, and NoSQL can reduce system latency for known access patterns
at the expense of integrated query flexibility. The Internet of Things uses many sensors and produces
a large amount of sensing data. Mehmood, Culmone & Mostarda (2017) model temporal aspects of
sensor data, develop a prototype for the MongoDB real-time platform, and discuss the temporal data
modeling challenges and decisions.

Sensor data is typically a kind of stream data which can be stored in a NoSQL datastore for stream
analytics (Mahmood, Orsborn, & Risch, 2020) and represented as time-series data. Some NoSQL-
based storage models for massive time-series data have been developed (Di Martino et al., 2019).
Calatrava, Fontal, Cucchietti, & Diví-Cuesta (2021) build a time-series database on top of MongoDB,

Journal of Database Management
Volume 35 • Issue 1

5

called NagareDB. The goal of NagareDB is to easily access three of the essential resources: hardware,
software, and expert personnel. Based on the column-family database, Cassandra, Jensen, Pedersen
& Thomsen (2021) design a multi-model online algorithm with a user-defined value error range and
propose a general modular distributed architecture ModelarDB+. As a portable library, ModelarDB+
uses spark for query processing, which can significantly reduce development costs. Tsubouchi et
al. (2019) introduce a time series database architecture HeteroTSDB, using Amazon Web Services,
which automatically tiers on heterogeneous key-value stores. Bollen et al. (2023) propose the use
of temporal graph databases to represent and query time series data in transportation networks. In
(Ochiai, Ikegami, Teranishi & Esaki, 2014), based on HBase, the RowKey is redesigned for time-series
data to provide Get and Set operations. However, their proposal does not support the range query of
time-series data. In addition, OpenTSDB, a distributed, scalable time series database, is the product
of redesign based on HBase; KairosDB stores time series in Cassandra. Different types of NoSQL
databases generally have different performances (Matallah, Belalem & Bouamrane, 2020). Focusing
on experimental analysis for time series data storage structures in databases, Li, Pu, Li & Xu (2023)
compare and analyze the space and time consumed in processing bulk loading/insertion, range query,
and aggregate calculation of time series data under row and column storage. They conclude that the
choice of time-series storage should be based on the specific application scenarios. To fully utilize
the respective advantages of different NoSQL databases and further improve the storage efficiency
of massive time-series data, Ramesh, Sinha & Singh (2016) present several data modeling schemes
in Cassandra and MongoDB to store the discrete time-series data, where Cassandra has a sequential
data storage mechanism. MongoDB has a flexible schema and a rich query language.

To further improve the storage efficiency of massive time-series data, in-memory time series
databases have been proposed, where the time-series data used more recently are saved in memory, and
their reading performance can be significantly improved. Gorilla (Pelkonen et al., 2015), Facebook’s
in-memory time series database, applies a simple 3-tuple to present a time-series data: a string key, a
64-bit time stamp integer, and a double precision floating point value. All time-series data are sharded
based on these unique string keys, and each time series dataset is mapped to a single Gorilla host. Also,
Gorilla leverages compression techniques like delta-of-delta timestamps and XOR’d floating point
values to improve query efficiency by reducing Gorilla’s storage footprint. Monarch (Adams et al.,
2020), Google’s in-memory time series database, stores time-series data in schematized tables, and
each table consists of multiple key columns, a value column for a history of points of the time series.
Key columns (also referred to as fields) form the time series key, which has targets and metrics two
sources. The in-memory time series database Heracles (Wang, Xue, & Shao, 2021) uses a two-level
epoch-based memory mechanism, allowing in-memory data to be flushed and reclaimed gradually,
where un-reclaimed data can still serve queries. Heracles is implemented based on Prometheus10, a
representative open-source time-series database. In practice, the in-memory time series databases
should be combined with disk-based time series databases for full time-series data management. For
example, time-series data in Gorilla is written to an HBase data store, and a relational data model
underlies Monarch’s expressive query language for time series analysis.

The paper proposes an RHTSDB storage schema based on Redis and HBase for massive time-
series data after stating time-series data are stored in memory and in NoSQL databases, where Redis
functions as an in-memory time series database to improve data reading efficiency and HBase functions
as a disk-based time series database to facilitate data storage scalability. The storage schema we use
differs from NoSQL-based time-series storage solutions, which only use a single type of NoSQL
database (e.g., Cassandra, HBase, or MongoDB) and only one type of in-memory storage solution.
Additionally, our storage schema differs from existing works that combine in-memory and disk-based
time series databases because we use databases specifically designed for time series rather than
general purpose databases, even though they use general purpose databases as disk-based time series
databases. In order to fill this gap, we use Redis as a time series in-memory database and HBase as a
disk-based time series database. For massive time-series data, we develop a cold and hot separation

Journal of Database Management
Volume 35 • Issue 1

6

mechanism and provide a wide range of support for manipulating time-series data, such as insertion,
update, single value query, range query, and multidimensional query.

STORAGE SCHEMA OF TIME SERIES DATABASE WITH REDIS-HBASE

Our storage schema RHTSDB (Redis-HBase Time Series Database) mainly comprises two modules:
Trie Tree Time Series (TTTS) and Redis-HBase Time to Live (RHTTL). The TTTS module is
responsible for data writing and query in Redis and provides the most basic data writing, single value
query, range query, multidimensional query, and data update functions. The RHTTL is responsible
for the data persistence function in HBase. In detail, RHTTL realizes the hot and cold separation
mechanism of time-series data, where the infrequently accessed cold data are stored in HBase, and the
frequently accessed data are stored in Redis, continuously maintaining the time-series data in Redis.

We formally describe our storage framework RHTSDB as a quintuple: RHTSDB = {TsS, ReS,
HbS, MaS, OpS}. Among them, TsS is a set of original time-series data to be stored; ReS is the Redis
database that stores the hot time-series data; HbS is the HBase database that stores the cold time-series
data; MaS, is a set of mappings between the hot and cold time-series data; OpS is a set of operations
(e.g., writing and querying operations) over the stored time-series data.

With the TTTS and RHTTL modules, RHTSDB supports time-series data mapping between Redis
and HBase: refreshing some time-series data in Redis to HBase and loading some time-series data in
HBase to Redis. For this purpose, we first design consistent keys for time-series data stored both in
Redis and HBase to prevent the additional conversion of key values in data mapping and querying,
and then propose a cache elimination strategy to ensure rational allocation of hot and cold time-series
data both in Redis and HBase. In this case, the design of keys and cache elimination strategies must
fully consider the structure and interaction of time-series data.

Trie Tree Time Series
As a module of the RHTSDB schema, the TTTS module is mainly responsible for the acquisition,
query, and update of time-series data. To deal with time-series data, TTTS divides time-series data
into four parts: timestamp, metric, tags, and value. The tags include the dimension tag name and the
corresponding dimension tag value of time-series data. The value includes the index name and the
specific measurement value. An example of time-series data division in TTTS is shown in Fig. 1.

The process of ingestion of TTTS includes:

(a) 	 All fields in time-series data are divided into four parts, including metric, timestamp, dimension
label, and measured values.

In Fig. 2, for example, the metric of time series entity is device, the timestamp is 1652198940,
and the dimension label is represented by a set of key value pairs: {{battery_status: discharging},
{device_id: demo0000}, {BSSID: A0:B1:C5:D2:E0:F3}, {SSID: wealth net}}. In addition, the
measured values are represented by a set of key value pairs: {{battery_temperature: 96}, {BSSID:

Figure 1. Time-series data format

Journal of Database Management
Volume 35 • Issue 1

7

91.7}, {cpu_aug_1min: 5.26}, {cpu_aug_5min: 6.172}, {cpu_aug_15min: 6.510666667}, {mem_free:
650609585}, {mem_used: 34930415}, {rssi: -42}}.

(b) 	 For the four parts above (except field_vi), the corresponding dictionary tree needs to be built. We
assign the corresponding number to each node and finally get a number combination represented
by metric, tags, and field_ki, with PRE_ KEY means. At the same time, we also need to build an
inverted index list for the dimension query.

(c) 	 PRE_KEY+timestamp is regarded as the final stored key, and its value is the index value that
corresponds to the field_ki.

(d) 	 Redis stores each pair of key and value combinations in the List data type.

The query process of TTTS includes:

(a) 	 Query the PRE_KEY corresponding to metric, tags, and field_ki from the dictionary tree
constructed by the four parts in memory. If there is no number, the query will end. Otherwise,
the key will be returned, represented by n0n1n2. The corresponding PRE_KEY is queried from
the Inverted Index List if it is a multidimensional query.

(b) 	 According to time information, the key (n0n1n2t) that stores the final single value is obtained
for the time of a single value. If it is a range query, the keys within the time range are obtained,
represented by n0n1n2t*.

(c) 	 Querying the corresponding data in the List.

To improve the searching performance in NoSQL databases, it is crucial to build and utilize a
tree-based index (Karras et al., 2022). In the TTTS module of RHTSDB, time-series data divided
into four parts may contain too many tags and values, which have different timestamps. To speed up
their searching, the dictionary tree is built, where each node is assigned with a corresponding number.

Redis-HBase Time to Live
Redis supports two storage mechanisms, AOF (Append Only File) and RDB (Redis DataBase). For
the RDB snapshot mode, Redis forks a sub-process whenever data is saved, where the sub-process
carries out the persistence work. When the dataset is relatively large, fork may be very time-consuming,
causing the server to stop client processing within a certain millisecond. If the dataset is extensive
and the CPU time is very tight, the stop time may be as long as a whole second. For the AOF mode,
when the amount of data is large, the AOF file may not be able to restore the dataset to how it was
saved when reloaded. It is necessary to modify the data in real-time or AOF simultaneously, which
inevitably leads to both methods’ inefficiency. Therefore, these two storage methods of Redis cannot
solve the problem of massive time-series data persistence perfectly. To deal with the persistence of
massive time-series data stored in Redis, RHTTL is designed and applied for scalability. With RHTTL,
the infrequently accessed cold data are stored in HBase, and the frequently accessed data are stored
in Redis. To implement the hot and cold separation mechanism of time-series data, RHTTL needs
to continuously maintain the time-series data in Redis.

Figure 2. Time-series data sample

Journal of Database Management
Volume 35 • Issue 1

8

With the hot and cold separation mechanism of time-series data, realizing the mutual mapping
of time-series data between Redis and HBase is essential. To this end, we need to comprehensively
consider the design of key between Redis and HBase. In HBase, the structural design of RowKey
is open to users on the one hand, but on the other hand, the RowKey design directly decides if the
storage and query of data in HBase can finally get good performance (Ochiai, Ikegami, Teranishi &
Esaki, 2014). In addition, the data model also directly affects the reading and writing performance
of the time series database (Rinaldi et al., 2019). So, it is not trivial to design the RowKey of HBase,
and this is especially true for time-series data stored both in Redis and HBase. Combined with the
key design in Redis, the final setting of RowKey in HBase is the same as that in Redis. The consistent
key of time-series data stored in Redis and HBase can both avoid unnecessary conversion of keys
when querying many data points are queries. In case the RowKey in HBase conflicts with the key
in Redis or they need to go through a complex conversion, a bottleneck in reading performance will
occur in the storage schema based on Redis and HBase. Then, unlike the key design of common data
in HBase, the RowKey design of time-series data in HBase should consider timestamps. Based on
our discussion in the TTTS module, we use “PRE_KEY+timestamp” as the RowKey of HBase. The
table structure design of HBase with RowKey is shown in Fig. 3, where each value of RowKey (say,
PRE_KEY+day1) corresponds to a column family that consists of a set of value pairs about fine-
grained time points and the corresponding values (say, a value pair time12:value12).

Redis is an in-memory database, and its storage space is limited by memory size. So, it is essential
to refresh some data from Redis to HBase so that only the latest data and the data with high query
frequency, are stored in Redis. Moreover, we need a reasonable strategy for Redis’s cache replacement.
An improper design of the data expiration rule may lead to a cache avalanche. An extreme case is that
all data are set to be expired simultaneously, and all data in the cache are cleared at the same time.
When this occurs, all query requests have to be sent to HBase for answer return, and this significantly
degrades the system performance.

The original cache elimination strategy used in Redis only considers a single factor, such as the
query frequency or write time (Li, Guo & Guo, 2019). In this paper, we present a cache elimination
strategy based on the query frequency and update frequency of time-series data. The expiration time
of time-series data can be calculated as follows.

RHTTL
PRE KEY

PRE KEY
Tquery

update

= × × +� �
_ �

_
� � � �α β 	

We use α∈[0,1] mainly to adjust the weight of query and update ratio. PRE KEYquery_ and
PRE KEYupdate_ represent query and update frequency of time-series data respectively. In addition,

Figure 3. RowKey and table structure design

Journal of Database Management
Volume 35 • Issue 1

9

β and T are the initial values given by the model. By jointly setting and adjusting α, β and T, we can
finally obtain a rational allocation of hot and cold time-series data in both Redis and HBase. To
implement RHTTL, we create an RHTTL helper in Redis to record the auxiliary information of
RHTTL. The RHTTL helper design is shown in Fig. 4.

The expired data in Redis needs to be refreshed to HBase, and at the same time, the cold data
in HBase needs to be loaded to Redis. Given that Redis and HBase have different storage models,
we need to map time-series data between Redis and HBase. First, for the mapping of time-series
data from Redis to HBase, as shown in Fig. 5, we identify three scenarios to map the Redis data that
will be persisted to HBase: (1) the keys maintained in the memory are periodically checked, and the
expired data will be refreshed to HBase; (2) when the number of keys maintained in the memory
exceeds the threshold set by the system, the corresponding data refresh mechanism is triggered; (3)
the data to be refreshed are encapsulated according to their keys, which will be refreshed to HBase
by calling myHBaseClient. After the data is refreshed from Redis to HBase, their corresponding
RHTTL file needs a real-time update.

Then, for the mapping of time-series data from HBase to Redis, as shown in Fig. 6, we follow
three major steps to map the HBase data that will be cached to Redis: (1) we traverse the rowkeys
of all data to be cached; (2) for each item of rowkey, we calculate and obtain its column clusters;
(3) we traverse each column cluster then cache the specific data to Redis. After the data is cached,
the number of operations on the corresponding rowkey needs to be calculated, and the RHTTL file
needs to be updated accordingly.

Finally, in our storage schema RHTSDB for time-series data, data ingestion and query processes
are based on the TTTS module; after TTTS ingests and queries Redis data, the RHTTL module
updates the RHTTL files and cold data in Redis and also loads hot data from HBase to Redis. In the
following, we present data ingestion and query processes of RHTSDB.

Figure 4. RHTTL helper design

Figure 5. Redis to HBase processing

Journal of Database Management
Volume 35 • Issue 1

10

Ingestion and Update of RHTSDB
Based on the data ingestion function of TTTS for Redis, data ingestion of RHTSDB is implemented
by mapping time-series data between Redis and HBase. Before ingesting data, it is needed to judge if
the number of keys maintained by RHTTL files exceeds the given threshold. If so, RHTSDB refreshes
the data that are maintained by the keys and have the lowest RHTTL value (i.e., colder keys) into
HBase. Of course, this is a rare case because RHTSDB always maintains the RHTTL files after each
operation so that smooth data insertion can be carried out next time.

For the data intake process, RHTSDB uses a specific data insertion command format: RHTSDB.
INSERT timestamp | metric tags_ki: tags_vi | field_ki: field_vi. When an insertion operation is allowed
in Redis, RHTSDB generates the corresponding PRE_KEY according to the metric and tags. According
to the corresponding timestamp, field_ k generates the keys for time-series data storage in Redis.
Finally, RHTSDB performs the TTTS’s insertion operation and then updates the RHTTL file again.

For the data update operation, RHTSDB uses a specific update command format: RHTSDB.
UPDATE metric tags_ki:tags_vi field_ki timestamp value. The value in the command represents the
latest collected value. First, RHTSDB uses metric, tags, and field_ ki to generate the key used for
storage. If we need to update the values of multiple indicators, we will get a set of keys. Then, we
judge if a key to be updated exists in the RHTTL file and if it exists in Redis or HBase. When the
key exists in Redis, we call the update command of TTTS to update the data in Redis. If the key
does not exist in Redis, we further query if there is a target key in HBase BloomFilter. If so, we will
update the target data in HBase. Finally, RHTSDB updates all the fields that need to be updated and
then updates the RHTTL file.

Query of RHTSDB
RHTSDB supports diverse queries of time-series data, including single-value query, range query,
and multidimensional query. A single-value query queries the collection value of a specific collection
index at a particular time point. The specific command format of a single-value query is:
RHTSDB.SELECT_ONE metric tags_k

i
:tags_v

i
 field_k

i
 timestamp.

In the single-value query, timestamp definites a time point. A range query is to query the collection
value of a particular collection index in a given range. The time range may be tens of minutes or
hours. The specific command format of a range query is:
RHTSDB.SELECT_RANGE metric tags_k

i
:tags_v

i
 field_k

i
 timestamp1

timestamp2.

Figure 6. HBase to Redis processing

Journal of Database Management
Volume 35 • Issue 1

11

In the range query, timestamp1 and timestamp2 represent the start time and the end time,
respectively. A multidimensional query enables users to query data within the corresponding time
range according to the dimension label of time-series data. The specific command format of a
multidimensional query is:
RHTSDB.SELECT_DIMENSION tags_k

i
: tags_v

i
 timestamp1 timestamp2,

In the multidimensional query, timestamp1 represents the start time, and timestamp2 represents
the end time. When timestamp1 is equal to timestamp2, it means to query the collection value at
a fixed time point. If a dimension is not limited in the multidimensional query, the corresponding
dimension information can be replaced by * in the command.

With the hot and cold separation mechanism of time-series data, RHTSDB stores newly acquired
data and frequently queried data in Redis and stores the data with low query frequency in HBase. For
a given request of querying time-series data, RHTSDB first makes a search in Redis and then returns
the answer satisfying the user request. In case the answers do not exist in Redis (meaning Redis
query failed), RHTSDB then judges if there is a corresponding key in the bloom filter of HBase. If
the key does not exist, the query finally ends, and no answer is returned. If the key exists, RHTSDB
searches in HBase and returns the answer from HBase. The single-value, range, and multidimensional
queries in RHTSDB follow a similar process: generating the tags, judging the query, and updating
the RHTTL file. Note that for answers from HBase, the answers will be loaded to Redis as hot data.
In the following, we present a generic algorithm for querying time-series data with RHTSDB.

Algorithm 1. The Query of Redis HBAse Time Series Database

Journal of Database Management
Volume 35 • Issue 1

12

For a query given by the user, RHTSDB first generates the corresponding keys according to the
query conditions. If the query conditions are illegal, Setkeys must be Æ . After obtaining the set of
keys of query criteria, RHTSDB queries each key to determine if each key exists in Redis or HBase
and then obtains the answer stored for each key. Note that RHTSDB does not judge if all keys are
valid at one time. In addition, to keep the whole RHTSDB consistent concerning the existence of
time-series data in Redis or HBase, RHTSDB will update the RHTTL file by using a hot and cold
separation mechanism in real-time before the final result is returned and finally returns
RedisModuleReply. RHTSDB completes the time-series data acquisition and query function through
the mutual cooperation of TTTS module and RHTTL module, where searchRedis() relies on the
TTTS module to perform specific query operations.

The time complexity of RHTSDB is mainly determined by querying RHTSDB. The worst
situation is that for a given query, the possible answers do not exist in Redis (that is, answers are
cold data rather than hot data), and HBase has to be searched for possible answers returned. The time
complexity of RHTSDB is roughly comparable to that of HBase.

EXPERIMENT

We used the RHTSDB model proposed in this paper to perform massive time-series data ingestion
and query. We report the experimental results in this section. The time-series data storage models
used in the comparative experiment include HBase, MongoDB, InfluxDB, and Apache IoTDB, which
were compared with RHTSDB over several metrics. As an essential part of Hadoop ecology, HBase
has good expansion performance. Its underlying LSM tree structure can satisfactorily complete the
production environment of large-scale modeling and a small amount of reading. MongoDB is the
most widely used document-oriented database, which excels at read operations due to memory-loaded
MongoDB register maps. We compared RHTSDB with HBase and MongoDB to show the effect of
query speed optimization used in this paper. InfluxDB is a native time series database, which has
been demonstrated to have high ingestion and query throughput of time-series data, compared with
several databases, TimeScaleDB, Durid, and Cassandra (Shah, Jat & Sashidhar, 2022). Apache IoTDB
is an emerging storage system focusing on large-scale IoT time-series data management. It provides
many query and analysis functions, including single value query, range query, multidimensional
query, and aggregation analysis. It has been demonstrated (Wang et al., 2020) that Apache IoTDB has
good performance in benchmark tests. Apache IoTDB is selected for comparison to better evaluate
the comprehensive performance of RHTSDB. In the experiment, we mainly measure the uptake rate
and storage consumption of time-series data in RHTSDB, HBase, InfluxDB, and Apache IoTDB
as well as storage consumption of time-series data in RHTSDB, HBase, MongoDB, InfluxDB, and
Apache IoTDB.

Experimental Environment
Our RHTSDB is developed in C++ language. As a third-party module, RHTSDB can assist Redis
in work. We can run RHTSDB as a configuration file by adding RHTSDB.so files to the redis.conf
configuration file. Alternatively, we can also use the module load command to load RHTSDB after
Redis is started with redis.so file. The server used in the experiment is equipped with the Hadoop
service corresponding to HBase. Considering that HBase is written in Java language and the external
module of Redis uses C/C++ language, we used Thrift11 programming framework to complete the
communication between Redis and HBase. This experiment uses the pseudo-distributed method to test
the performance of each model. The server is configured with 2 Intel (R) Xeon (R) CPU, 2.40GHz,
8GB of memory, 100GB of SSD, and the operating system is Ubuntu 20.04 LTS. The configuration
information of other software versions installed in the experiment is shown in Table 1.

Journal of Database Management
Volume 35 • Issue 1

13

Datasets
The datasets used in the experiment are the sensor information of IoT (Internet of Things) equipment
provided by the TimescaleDB12 official website. There are three datasets, including 1,000 devices
recorded over 1000 time intervals, 5000 devices recorded over 2000 time intervals, and 3000 devices
recorded over 10000 time intervals. From small to large, their sizes are 144.8MB, 1.45GB, and
4.34GB, respectively, corresponding to 1 million, 10 million, and 30 million of data. These datasets
include indicators such as CPU, sensor time, device ID, memory, and network collected from mobile
devices. According to the construction rules of RHTSDB for time-series data, we classify the collection
indicators in the dataset. The data type of metric is a string, the time type is datetime, and the fields
maintained by tag and field are shown in Table 2 and Table 3.

Table 1. Experimental Environment Configuration

Component Version

JDK Jdk-8u271-linux-x64

Hadoop Hadoop-3.2.2

Thrift Thrift-0.11.0

Tcl Tcl-8.6.11

HBase Hbase-2.3.7

Redis Redis-6.2.5

Apache IoTDB Apache IoTDB-0.13.0

Table 2. Tag Information

Tag name datatype

device_id string

battery_status string

bssid string

Ssid string

Table 3. Field Information

Field name datatype

battery_level int

battery_temperature double

cpu_avg_1min double

cpu_avg_5min double

cpu_avg_15min double

mem_free int

mem_used int

rssi int

Journal of Database Management
Volume 35 • Issue 1

14

Data Ingestion Experiment
Data ingestion is the first step in processing time-series data. The time of data ingestion generally
refers to the time of loading time-series data into the target time series database. It is widely adopted in
the literature that the intake data points per second are used to evaluate the intake unit’s performance.
However, this way contains many manufactured factors. Sometimes, the specific definitions of
data points are different, and this leads to the measurement being just a plan and having reference
significance for itself. In addition, different databases have different formats for batch inserts of time-
series data. For example, MongoDB usually uses the mongoimport command to import data directly;
Redis usually adopts the batch command when inserting data. As a result, the direct data intake of
different time series databases is not entirely unified. Therefore, in this paper, we use total time as
an indicator to evaluate data uptake performance, namely, the time taken to absorb all time-series
data in the unit of seconds.

In addition to time, storage resource consumption is an important metric often used for evaluating
storage models. Storage resource consumption means the hardware (e.g., SSD) cost of storing time-
series data. To save storage space, some time series databases often use compression methods to
compress time-series data effectively. Gorilla (Pelkonen et al., 2015), for example, uses Delta and
XOR compression algorithms based on encoding compression and TRISTAN (Marascu et al., 2014)
algorithm based on dictionary compression, aiming to reduce the storage space of time-series data
and save resources. Since time-series data compression may destroy the original time-series metadata
and reduce the data uptake performance, our storage schema RHTSDB model does not compress the
time-series metadata but retains the original structure of time-series data.

We compared the uptake rates and storage resource consumption of four storage models, HBase,
RHTSDB (T-RH in short), Apache IoTDB, and InfluxDB, over three datasets of 1M, 10M, and 30M.
The experimental results are shown in Fig. 7 and Fig. 8, respectively, where the unit of data ingestion
is second (s) and the unit of storage consumption is MB.

Shown in Fig. 7, our storage schema RHTSDB takes the shortest execution time in data uptake
efficiency. The reason is that RHTSDB uses Redis for the initial processing of time-series data, and
Redis is an in-memory database. Apache IoTDB needs the longest time in data uptake efficiency
mainly because it needs to spend time creating TsFile file and providing corresponding compression
algorithm for time-series data, which must reduce its speed of time-series data ingestion to some
extent. It is also shown in Fig. 8 that InfluxDB has a significant advantage in storage consumption
because of the usage of a compression algorithm. In addition, Apache IoTDB has the second-best

Figure 7. Time of data ingestion

Journal of Database Management
Volume 35 • Issue 1

15

performance in storage consumption because of its internal TsFile design and usage of a compression
algorithm. The storage consumption of RHTSDB is slightly lower than that of HBase in each dataset.
This is because RHTSDB internally manages the label information of time-series data, significantly
reducing the label information redundancy in time-series data.

Data Query Experiment
To test the single value query function, we randomly selected 1000 time-series data from 30M point
data using the method of random numbers. We tried to select data from different time points under
different time series sources as much as possible:

(1) 	 we selected 500 data from these 1000 time-series data as successful query objects and generated
the corresponding query commands,

(2) 	 we took 250 data from the remaining 500 data, modifying the labeled information of relevant
dimensions in the time series source into non-existent dimensions. For the last 500 data, we
modified the measurement metric into non-existent indicators to generate corresponding query
commands.

Finally, we randomly ran the generated 1000 query commands and took the average execution
time of all query commands as the final query results. Similarly, we generated corresponding test
commands for range and dimension queries according to the above rules. However, we further
stipulated the first rule above: we set the query time ranges as one day and two days for two halves
of the datasets, respectively; for dimension query, we set its time range as two days.

With five storage models, HBase, RHTSDB (T-RH in short), Apache IoTDB, MongoDB, and
InfluxDB, we evaluated their functions of single value query, range query, and multidimensional query
over three datasets of 1M, 10M, and 30M. These three types of queries are commonly used in time
series databases. Their experimental results are shown in Fig. 9, Fig. 10, and Fig. 11, respectively,
where the unit of data query are in milliseconds (ms).

It can be observed from Fig. 9, Fig. 10, and Fig. 11 that our storage schema RHTSDB has the best
performance in single-value, range, and multidimensional queries, with RHTSDB, MongoDB, and
InfluxDB having similar performance in multidimensional queries. This is mainly due to the unique
design of the RHTSDB model for the query scenario of time-series data and the usage of hot and
cold separation mechanism. It is shown in Fig. 9 that the single value query delay of our RHTSDB is
about 0.35 times that of HBase, 0.36 times that of Apache IoTDB, and 0.42 times that of MongoDB,

Figure 8. Size of storage consumption

Journal of Database Management
Volume 35 • Issue 1

16

Figure 10. Response time of range query

Figure 11. Response time of multidimensional query

Figure 9. Response time of single value query

Journal of Database Management
Volume 35 • Issue 1

17

respectively. It is shown in Fig. 10 that, for the range query function, the query performance of each
storage model is very stable, and the range query delay of RHTSDB is only about 0.18 times that of
HBase, 0.1 times that of Apache IoTDB, 0.18 times that of MongoDB, and 0.66 times that of InfluxDB,
respectively. It is shown in Fig. 11 that, for the multidimensional query function, the performance
of each storage model is relatively stable also, and the multidimensional query delay of RHTSDB is
about 0.25 times that of HBase and 0.3 times that of Apache IoTDB.

Discussions
Time-series data ingestion and query are two important functions for massive time-series data
storage. It is essential to evaluate time-series databases from these two aspects. Compared with four
comparators, HBase, MongoDB, InfluxDB, and Apache IoTDB, our storage schema RHTSDB has
the shortest response time in single value query, range query, and multidimensional query over three
datasets of 1M, 10M, and 30M. This is mainly due to the fact that RHTSDB is specially designed for
the query scenario of time-series data, and the corresponding separation mechanism of hot and cold
data is used. For data ingestion, InfluxDB has the minimum storage consumption but a longer time in
data uptake; RHTSDB has the shortest execution time in data uptake, but its storage consumption is
higher than that of Apache IoTDB and InfluxDB and still lower than that of HBase. So, in summary,
our proposed RHTSDB has the advantage of overall performance, but there is room for improvement
in terms of storage consumption and data writing.

RHTSDB uses Redis as the cache and HBase as the backend storage, so the scalability of
RHTSDB is mainly determined by HBase, a distributed and versioned NoSQL database with robust
scalability. With RHTSDB, querying massive time-series data is first conducted in hot data stored
in Redis and then in cold data stored in HBase if searching Redis fails. Ideally, the final answers can
be returned only by searching Redis. Under this situation, there is no data ingestion and update, and
data are considered durable. However, in practice, the absolute data duration under this completely
ideal situation is almost impossible, and it is very common that some queries have to be evaluated
against HBase. As long as such query evaluations happen infrequently, data can be considered durable.
A worse case is that many queries against Redis fail, and they are finally evaluated against HBase.
Under this situation, data are considered durable volatile. An extreme case is that no query can return
an answer from Redis. Our storage schema RHTSDB proposes and applies a cold and hot separation
mechanism for time-series data, which fully considers if data are recently/frequently accessed as
well as dynamic maintenance of cold and hot data. This can largely guarantee the RHTSDB’s fault
tolerance in querying hot data. Of course, the usage of our cold and hot separation mechanism in
actual applications must also consider the scale of time-series data to be processed and the memory
capacity to be used simultaneously.

THEORETICAL AND PRACTICAL CONTRIBUTIONS

With the wide use and rapid growth of time series data, it has become essential to manage time series
data, and diverse storage schemas for time series data have been invented accordingly, including
the native time series databases and the time series databases based on NoSQL databases. NoSQL
databases have been extensively adopted for data management of many applications in the era of big
data. Compared with native time series databases, NoSQL-based time series databases can provide
more complete support to time-series data management and an easier use of databases due to their
mature techniques and wide applications. Existing NoSQL-based time series databases proposed in
several works mainly use single types of NoSQL databases. Few works jointly use in-memory time
series databases and disk-based time series databases, but the in-memory databases used are native
and designed just for time series.

In this paper, we advocate the use of two different categories of NoSQL databases, Redis and
HBase, for large-scale time-series data storage. We reveal that being an in-memory time series

Journal of Database Management
Volume 35 • Issue 1

18

database, Redis can improve time-series data intake speed and reduce redundant dimension labels of
time-series data as well as disk space consumption of time-series data. Our proposed storage schema
RHTSDB supports a hot and cold separation mechanism and can improve the cache hit rate. Based on
two widely used NoSQL databases, RHTSDB is easily deployed and employed, meanwhile, RHTSDB
preserves its good performance in the intake speed and query speed of large-scale time-series data.

CONCLUSION

Time-series data produced in the IoT scenario have salient characteristics, such as large volume,
continuous generation, high-frequency writing, low-frequency reading, and fast query response.
Aiming at their efficient management, we initiate an efficient storage schema RHTSDB for large-scale
time-series data based on Redis and HBase in this paper. Among them, Redis can improve time-series
data intake speed, reduce the redundancy of dimension labels in time-series data, and reduce disk space
consumption by time-series data. Redis is highly dependent on memory, and its persistence scheme
is not conducive to managing time-series data. For this reason, HBase is also used in RHTSDB for
long-term time-series data persistence. For this hybrid storage schema, we propose an optimized hot
and cold separation mechanism for RHTSDB, which can improve the cache hit rate. Instead of the
LRU replacement strategy, the flexible way adopted in the paper can determine the specific RHTTL
(Redis-HBase time to live) according to query update times. In the HBase layer, BloomFilter is added
to save space cost and improve data query speed. The experimental results show that RHTSDB can
improve the data intake speed to a certain extent. Compared with the storage schemas HBase and
Apache IoTDB, RHTSDB has a significant advantage in data query speed, and its performance in
executing range queries is close to Redis.

The hybrid storage schema RHTSDB proposed in the paper has shown some excellent
performances, but it still has some space to further improve its deficiencies in memory space and
data intake. First, RHTSDB only supports pseudo distribution at present, but a mature time series
database should also have the function of distributed storage. Given that Redis and HBase have a
distributed deployment function, we will extend RHTSDB to realize distributed deployment based
on the distribution functions of Redis and HBase. Second, compared with HBase, the uptake rate of
RHTSDB fails to increase significantly. A major reason is that RHTSDB is developed in Redis single
thread mode, where a single thread is completed from network IO processing to actual read-write
commands. In practice, we can introduce multiple IO threads for RHTSDB to process network requests
and further improve the data intake rate. In addition, we plan to add a data compression module into
RHTSDB so that the of memory and disk space consumption of massive time-series data can be
reduced significantly. We will investigate efficient algorithms for time-series data compression. Finally,
it is interesting to investigate the effect of some key parameters (e.g., query rate) on the performance
of our approach by varying these parameters. In our future work, we will also evaluate RHTSDB
against more time-series data storage models over large-scale time-series datasets.

Journal of Database Management
Volume 35 • Issue 1

19

REFERENCES

Abdelmoumni, O., & Chenfour, N. (2022). ICHC framework: NoSQL data model and a microservices-based
solution for a cultural heritage platform. International Journal of Software Innovation, 10(1), 1–16. doi:10.4018/
IJSI.293272

Adams, C., Alonso, L., Atkin, B., Banning, J., Bhola, S., Buskens, R., Chen, M., Chen, X., Chung, Y., Jia, Q.,
Sakharov, N., Talbot, G., Tart, A., & Taylor, N. (2020). Monarch: Google’s planet-scale in-memory time series
database. Proceedings of the VLDB Endowment International Conference on Very Large Data Bases, 13(12),
3181–3194. doi:10.14778/3181-3194

Bajaj, A., & Bick, W. (2020). The rise of NoSQL systems: Research and pedagogy. Journal of Database
Management, 31(3), 67–82. doi:10.4018/JDM.2020070104

Bollen, E., Hendrix, R., Kuijpers, B., Soliani, V., & Vaisman, A. (2023). Analysing river systems with time
series data using path queries in graph databases. ISPRS International Journal of Geo-Information, 12(3), 94.
doi:10.3390/ijgi12030094

Calatrava, C. G., Fontal, Y. B., Cucchietti, F. M., & Diví-Cuesta, C. (2021). NagareDB: A resource-efficient
document-oriented time-series database. Data, 6(8), 91. doi:10.3390/data6080091

Di Martino, S. (2019). Industrial internet of things: persistence for time series with NoSQL databases. In
Proceedings of the 28th International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (pp. 340-345). IEEE. doi:10.1109/WETICE.2019.00076

Eom, S., & Lee, K.-H. (2017). Incorporating spatial queries into semantic sensor streams on the Internet of
Things. Journal of Database Management, 28(4), 24–39. doi:10.4018/JDM.2017100102

Gamero, D., Dugenske, A., Saldana, C., Kurfess, T., & Fu, K. (2022). Scalability testing approach for Internet
of Things for manufacturing SQL and NoSQL database latency and throughput. Journal of Computing and
Information Science in Engineering, 22(1), 060901. Advance online publication. doi:10.1115/1.4055733

Grolinger, K., Higashino, W. A., Tiwari, A., & Capretz, M. A. M. (2013). Data management in cloud environments:
NoSQL and NewSQL data stores, Journal of Cloud Computing: Advances. Journal of Cloud Computing
(Heidelberg, Germany), 2(22), 22. Advance online publication. doi:10.1186/2192-113X-2-22

Guo, D., & Onstein, E. (2020). State-of-the-art geospatial information processing in NoSQL databases. ISPRS
International Journal of Geo-Information, 9(5), 331. doi:10.3390/ijgi9050331

Hu, Y., & Dessloch, S. (2015). Temporal data management and processing with column oriented NoSQL
databases. Journal of Database Management, 26(3), 41–70. doi:10.4018/JDM.2015070103

Jensen, S. K., Pedersen, T. B., & Thomsen, C. (2021). Scalable model-based management of correlated
dimensional time series in ModelarDB+. In Proceedings of the 37th International Conference on Data
Engineering (pp. 1380-1391). IEEE. doi:10.1109/ICDE51399.2021.00123

Karras, A. (2022). Query optimization in NoSQL databases using an enhanced localized R-tree index. In
Proceedings of the 24th International Conference on Information Integration and Web Intelligence (pp. 391-
398). doi:10.1007/978-3-031-21047-1_33

Lee, C.-H., & Chung, C.-W. (2014). Compression schemes with data reordering for ordered data. Journal of
Database Management, 25(1), 1–28. doi:10.4018/jdm.2014010101

Lee, M., Jeon, S., & Song, M. (2020). Characterizing user interest in NoSQL databases of social question
and answer data. The Journal of Supercomputing, 76(5), 3866–3881. doi:10.1007/s11227-018-2293-x
PMID:32435085

Li, C., Li, B., Bhuiyan, M. Z. A., Wang, L., Si, J., Wei, G., & Li, J. (2018). FluteDB: An efficient and scalable
in-memory time series database for sensor-cloud. Journal of Parallel and Distributed Computing, 122, 95–108.
doi:10.1016/j.jpdc.2018.07.021

http://dx.doi.org/10.4018/IJSI.293272
http://dx.doi.org/10.4018/IJSI.293272
http://dx.doi.org/10.14778/3181-3194
http://dx.doi.org/10.4018/JDM.2020070104
http://dx.doi.org/10.3390/ijgi12030094
http://dx.doi.org/10.3390/data6080091
http://dx.doi.org/10.1109/WETICE.2019.00076
http://dx.doi.org/10.4018/JDM.2017100102
http://dx.doi.org/10.1115/1.4055733
http://dx.doi.org/10.1186/2192-113X-2-22
http://dx.doi.org/10.3390/ijgi9050331
http://dx.doi.org/10.4018/JDM.2015070103
http://dx.doi.org/10.1109/ICDE51399.2021.00123
http://dx.doi.org/10.1007/978-3-031-21047-1_33
http://dx.doi.org/10.4018/jdm.2014010101
http://dx.doi.org/10.1007/s11227-018-2293-x
http://www.ncbi.nlm.nih.gov/pubmed/32435085
http://dx.doi.org/10.1016/j.jpdc.2018.07.021

Journal of Database Management
Volume 35 • Issue 1

20

Li, K., Guo, K., & Guo, H. (2019). Financial big data hot and cold separation scheme based on HBbase and
Redis. In 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud
Computing, Sustainable Computing & Communications, Social Computing & Networking (pp. 1612-1617).
IEEE. doi:10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00237

Li, L., Pu, F., Li, Y., & Xu, J. (2023). A comparative study of row and column storage for time series data.
Proceedings of the 4th International Conference on Spatial Data and Intelligence, 223-238. doi:10.1007/978-
3-031-32910-4_16

Mahmood, K., Orsborn, K., & Risch, T. (2020), Wrapping a NoSQL datastore for stream analytics. Proceedings of
the 21st International Conference on Information Reuse and Integration for Data Science, 301-305. doi:10.1109/
IRI49571.2020.00050

Marascu, A. (2014). TRISTAN: real-time analytics on massive time series using sparse dictionary compression.
In Proceedings of the 2014 IEEE International Conference on Big Data (pp. 291-300). IEEE. doi:10.1109/
BigData.2014.7004244

Matallah, H., Belalem, G., & Bouamrane, K. (2020). Evaluation of NoSQL databases: MongoDB, Cassandra,
HBase, Redis, Couchbase, OrientDB. International Journal of Software Science and Computational Intelligence,
12(4), 71–91. doi:10.4018/IJSSCI.2020100105

Mehmood, N. Q., Culmone, R., & Mostarda, L. (2017). Modeling temporal aspects of sensor data for MongoDB
NoSQL database. Journal of Big Data, 4(1), 8. doi:10.1186/s40537-017-0068-5

Ochiai, H., Ikegami, H., Teranishi, Y., & Esaki, H. (2014). Facility information management on HBase: large-
scale storage for time-series data. In Proceedings of the 38th International Computer Software and Applications
Conference Workshops (pp. 306-311). IEEE. doi:10.1109/COMPSACW.2014.54

Ouaknine, K., Agra, O., & Guz, Z. (2017). Optimization of rocksdb for redis on flash. In Proceedings of the
2017 International Conference on Compute and Data Analysis (pp. 155-161). doi:10.1145/3093241.3093278

Pelkonen, T., Franklin, S., Teller, J., Cavallaro, P., Huang, Q., Meza, J., & Veeraraghavan, K. (2015). Gorilla: A
fast, scalable, in-memory time series database. Proceedings of the VLDB Endowment International Conference
on Very Large Data Bases, 8(12), 1816–1827. doi:10.14778/2824032.2824078

Ramesh, D., Sinha, A., & Singh, S. (2016). Data modelling for discrete time series data using Cassandra and
MongoDB. In Proceedings of the 3rd International Conference on Recent Advances in Information Technology
(pp. 598-601). IEEE. doi:10.1109/RAIT.2016.7507966

Rhea, S. (2017). LittleTable: a time-series database and its uses. In Proceedings of the 2017 ACM International
Conference on Management of Data (pp. 125-138). ACM. doi:10.1145/3035918.3056102

Rinaldi, S. (2019). Impact of data model on performance of time series database for internet of things applications.
In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (pp.
1-6). IEEE. doi:10.1109/I2MTC.2019.8827164

Sen, P. S., & Mukherjee, N. (2023). Ontology-based data modeling for NoSQL databases: A case study in
e-healthcare application. SN Computer Science, 4(1), 3. doi:10.1007/s42979-022-01405-5

Shafer, I., Sambasivan, R. R., Rowe, A., & Ganger, G. R. (2013). Specialized storage for big numeric time series.
Proceedings of the 5th USENIX Workshop on Hot Topics in Storage and File Systems.

Shi, X. (2020). ByteSeries: an in-memory time series database for large-scale monitoring systems. Proceedings
of the 11th ACM Symposium on Cloud Computing, 60-73. doi:10.1145/3419111.3421289

Solleza, F., Crotty, A., Karumuri, S., Tatbul, N., & Zdonik, S. (2022). Mach: a pluggable metrics storage engine
for the age of observability. Proceedings of the 12th Annual Conference on Innovative Data Systems Research.

Tsubouchi, Y. (2019). HeteroTSDB: An extensible time series database for automatically tiering on heterogeneous
key-value stores. Proceedings of the 43rd IEEE Annual Computer Software and Applications Conference, 264-
269. doi:10.1109/COMPSAC.2019.00046

Van Erven, G. C. G., Carvalho, R. N., Cordeiro da Silva, W. M., Lifschitz, S., Vera-Olivera, H., & Holanda,
M. (2019). Designing graph databases with GRAPHED. Journal of Database Management, 30(1), 41–60.
doi:10.4018/JDM.2019010103

http://dx.doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00237
http://dx.doi.org/10.1007/978-3-031-32910-4_16
http://dx.doi.org/10.1007/978-3-031-32910-4_16
http://dx.doi.org/10.1109/IRI49571.2020.00050
http://dx.doi.org/10.1109/IRI49571.2020.00050
http://dx.doi.org/10.1109/BigData.2014.7004244
http://dx.doi.org/10.1109/BigData.2014.7004244
http://dx.doi.org/10.4018/IJSSCI.2020100105
http://dx.doi.org/10.1186/s40537-017-0068-5
http://dx.doi.org/10.1109/COMPSACW.2014.54
http://dx.doi.org/10.1145/3093241.3093278
http://dx.doi.org/10.14778/2824032.2824078
http://dx.doi.org/10.1109/RAIT.2016.7507966
http://dx.doi.org/10.1145/3035918.3056102
http://dx.doi.org/10.1109/I2MTC.2019.8827164
http://dx.doi.org/10.1007/s42979-022-01405-5
http://dx.doi.org/10.1145/3419111.3421289
http://dx.doi.org/10.1109/COMPSAC.2019.00046
http://dx.doi.org/10.4018/JDM.2019010103

Journal of Database Management
Volume 35 • Issue 1

21

Ruizhe Ma is currently an assistant professor in the Department of Computer Science at the University of
Massachusetts Lowell, USA. She received her Ph.D. and M.S. degrees from the Department of Computer Science
at Georgia State University and her B.S. degree from Northeastern University, China. Dr.Ma’s research focuses
on data mining, machine learning, big data analytics, graph mining, and K-12 education.

Wang, C. (2023). Apache IoTDB: A time series database for IoT applications. Proceedings of the ACM on
Management of Data, 1(2), 195:1-195:27. doi:10.1145/3589775

Wang, C., Huang, X., Qiao, J., Jiang, T., Rui, L., Zhang, J., Kang, R., Feinauer, J., McGrail, K. A., Wang,
P., Luo, D., Yuan, J., Wang, J., & Sun, J. (2020). Apache IoTDB: Time-series database for internet of things.
Proceedings of the VLDB Endowment International Conference on Very Large Data Bases, 13(12), 2901–2904.
doi:10.14778/3415478.3415504

Wang, Z., Xue, J., & Shao, Z. (2021). Heracles: An efficient storage model and data flushing for performance
monitoring timeseries. Proceedings of the VLDB Endowment International Conference on Very Large Data
Bases, 14(6), 1080–1092. doi:10.14778/3447689.3447710

Zhou, L., Lu, B., Zhang, S., & Qi, L. (2020). Data cache optimization model based on HBase and Redis.
Proceedings of the 3rd International Conference on Data Science and Information Technology, 31-35.
doi:10.1145/3414274.3414279

ENDNOTES

1 	 https://www.influxdata.com/
2 	 https://redis.io/
3 	 https://hbase.apache.org/
4 	 https://cassandra.apache.org/_/index.html
5 	 https://www.mongodb.org/
6 	 https://www.couchbase.com/couchbase-server/overview
7 	 https://orientdb.org/
8 	 http://opentsdb.net
9 	 http://kairosdb.github.io
10 	 https://prometheus.io/
11 	 https://thrift.apache.org
12 	 https://docs.timescale.com/timescaledb/latest/tutorials/sample-datasets

http://dx.doi.org/10.1145/3589775
http://dx.doi.org/10.14778/3415478.3415504
http://dx.doi.org/10.14778/3447689.3447710
http://dx.doi.org/10.1145/3414274.3414279
https://www.influxdata.com/
https://redis.io/
https://hbase.apache.org/
https://cassandra.apache.org/_/index.html
https://www.mongodb.org/
https://www.couchbase.com/couchbase-server/overview
https://orientdb.org/
http://opentsdb.net
http://kairosdb.github.io
https://prometheus.io/
https://thrift.apache.org
https://docs.timescale.com/timescaledb/latest/tutorials/sample-datasets

